有哪些好用的 AI 学术研究工具和科研工具?

AI 应用其实分两个层面,第一是模型,第二是应用。现在很多模型厂家都是既做 toC 的对话应用,也做 toB 的 API 服务,方便第三方的开发者们调用 API 来实现自己更定制化的 AI 功能。

模型厂商的应用里有一些很好用的工具,比如国外的 ChatGPT、Claude,国内的通义、Kimi 等,都能直接上传文件进行问答,效果也不错,后面会举一些例子,但这些产品往往更加通用,目的是服务更多的普通用户,具体到学术/科研还需要自己完善很多 Prompt。

第三方的开发者们其实基于 GPT API 做了很多好用的应用,有的是浏览器插件,有的是 Obsidian / Zotero 等软件插件,而且很多都在 Github 上开源了。

不过想用这些插件,有个必备的工作就是准备好自己的 API key。所谓 API key,就是大模型厂家发放给用户的一个密钥,用于鉴别身份,进而统计用量和费用。通过 API key 调用 AI 大模型是按量计费的,比如 GPT-4o 就是 $5/1M tokens 输入,$15/1M tokens 输出,价格说实话挺贵的。而且 OpenAI API 现在已经不允许国内直接调用了,所以我们还是找些替代方案。

好在现在国产大模型已经把价格卷到了白菜价,几块钱就能用上百万 tokens,各家平台还都推出了新用户的免费体验额度,够用很久了。

为了方便比较模型之间的效果,本文以 SiliconFlow 提供的接口为例,类似的 API 接口各厂都有,方法是相同的。

完成注册以后,来到后台点击创建新API密钥,得到一个sk-xx 的密钥并妥善保管。

SiliconFlow 的 API 调用地址是https://api.siliconflow.cn/v1/chat/completions,但要注意,不同的工具需要填写的地址可能是不同的,有的只需要填前面的域名即可,不需要后面的全部地址。

具体的模型列表可以看文档,推荐测试使用以下几个:

  • THUDM/glm-4-9b-chat (32K)
  • Qwen/Qwen2-72B-Instruct (32K)
  • deepseek-ai/DeepSeek-Coder-V2-Instruct (32K)
  • deepseek-ai/DeepSeek-V2-Chat (32K)
  • 01-ai/Yi-1.5-34B-Chat-16K (16K)

准备好 AI 的 API 之后,就能在很多插件里使用了。

沉浸式翻译 + Arxiv 网页版

看英文文献,需要过的第一关就是语言关。毫不夸张地说,去年有了沉浸式翻译和 GPT API 之后,我看英文网站、文献的效率提升了 N 倍。

沉浸式翻译

在浏览器插件中下载「沉浸式翻译」,点击左下角设置:

左侧选择「翻译服务」,然后在点击网页底部的「添加兼容 OpenAI 接口的自定义 AI 翻译服务」:

在设置中,填写接口地址、API key、自定义模型名称,这里的最大请求数要根据情况填,比如 SiliconFlow 的 RPM(每分钟请求)限制为100,RPS(每秒请求)为 3,这里就不宜填太高。

填完以后,点击右上角的点此测试服务,正常情况下会提示验证成功:

设置完成后,在沉浸式翻译的插件页面中选择刚才自定义的模型即可:

Arxiv 网页版

以前在 Arxiv 上读论文,一般需要先下载 PDF,虽然一些插件能翻译 PDF 全文,但使用起来不太方便。现在 Arxiv 为大多数新上传的论文增加了网页版的渲染支持,读起来就更容易了。

举个例子。论文 2406.20098 的地址是https://arxiv.org/abs/2406.20098 ,PDF 下载地址是https://arxiv.org/pdf/2406.20098,网页版则是 https://arxiv.org/html/2406.20098

通过沉浸式翻译,打开双语对照阅读的效果,读论文的效率就会提升很多了:

Zotero-GPT 插件

Zotero 是一个强大的、开源的参考文献管理工具,旨在帮助研究人员收集、组织、引用和分享研究资源,是一个功能全面、易于使用的参考文献管理工具,适合各种学术研究和写作需求。

由于 Zotero 的开源性质,其社区非常活跃,也有很多人为 Zotero 制作开源的插件。比如今天要用的Zotero-GPT插件。

Zotero 的安装略(还是建议用 Windows,Mac 上似乎有些位置的插件兼容问题),然后从https://github.com/MuiseDestiny/zotero-gpt/releases/latest/download/zotero-gpt.xpi 下载插件。

之后打开 Zotero 菜单栏 - 工具 - 附加组件:

点击右上角设置 - 从文件中安装插件,选择刚才下载的 xpi 文件即可:

安装完成后,可以在工具栏看到插件的图标,可以点击图标唤起插件,也可以使用快捷键ctrl+/

此时还需要配置自己的 API 地址和 API key。如果你在国内,能直接使用 OpenAI key 的话,就只需要在输入框中使用命令输入/sercretKey sk-xx即可。

不过由于我们要调用国内的 AI API,所以需要打开 Zotero 的设置(首选项)- 高级 - 编辑器,打开时会提示风险,点 accept 即可:

然后在顶部搜索框中输入 GPT,然后修改apimodelsecretKey三项,注意,这里的 API 地址只需要输入https://api.siliconflow.cn/即可:

设置完成后,就可以直接使用插件进行对话了:

Zotero-GPT 内置了一些功能模板,比如翻译、改写等,也可以自己自定义 Prompt 模板,不过需要一点点代码能力。

比如,想要自定义一个「一句话总结选中段落」的快捷方式,就可以这么做:

在插件中输入:

#一句话总结 [position=11][color=#D14D72][trigger=/^总结/]

一句话总结这段内容,用中文回答:

${

Meet.Zotero.getPDFSelection() ||

Meet.Global.views.messages[0].content

}

然后点击Ctrl+S保存,就可以看到增加了这个 tag,可以选中一段话试一下:

大家也可以到 Zotero-GPT 的开源项目页挖掘更多功能或者反馈 issue 问题。

总结一下这个回答,主要做了几件事:

  • 注册 SiliconFlow 并记录 API 地址、API key 和模型名称
  • 下载并配置沉浸式翻译,以 Arxiv 网页版为例
  • 下载并配置 Zotero-GPT 插件,并演示了简单的自定义 tag 功能
人工智能工具如ChatGPT科研中扮演了越来越重要的角色,尤其在假设构建、问题细化及研究设计方面,能够为研究者提供巨大的帮助。为了深入理解如何利用ChatGPTAI工具进行科研活动,建议参考《科研助手:AI驱动的学术探索策略》,这本书全面地介绍了与AI协作的各种方式。下面是一些具体的操作方法: 参考资源链接:[科研助手:AI驱动的学术探索策略](https://wenku.csdn.net/doc/7gz2zns90v?spm=1055.2569.3001.10343) 首先,构建假设。使用ChatGPT时,可以通过提出一系列开放式问题来启发研究思路,例如,输入“如何将恢复力因素纳入重度抑郁症与ACEs关系的研究中?”AI将基于大量数据文献生成假设,为你的研究提供新的视角灵感。 其次,细化问题。在确定了研究的大方向后,通过更加具体的问题来细化研究问题,例如询问“体育活动中的哪些方面能够作为减轻ACEs影响的恢复力因素?”这样可以进一步明确研究的细节,为撰写观察性研究设计打下基础。 最后,设计观察性研究。在构建了假设细化了研究问题之后,你可以询问“设计一项观察性研究来检验体育活动对重度抑郁症的缓解作用的可行性步骤是什么?”AI工具将提供包括样本选择、数据收集方法、变量控制等在内的详细步骤,帮助你规划出一个科学合理的研究方案。 通过以上步骤,ChatGPT不仅能够帮助你构建研究假设,还能细化问题并设计出创新且可行的研究方案。通过不断与AI进行对话探讨,你可以获得更为深入的理解丰富的研究视角。在深入研究阶段,面对数据获取分析的挑战,ChatGPT能够提供策略建议,帮助你有效地处理研究过程中可能遇到的问题。《科研助手:AI驱动的学术探索策略》一书将为你的整个研究过程提供详尽的指导帮助,确保你的研究工作既高效又富有成效。 参考资源链接:[科研助手:AI驱动的学术探索策略](https://wenku.csdn.net/doc/7gz2zns90v?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值