tensorflow
文章平均质量分 52
NockinOnHeavensDoor
blog已不用~谢谢关注~
展开
-
tf.gather拼接
mu = np.random.rand(5,5)sigma = np.random.rand(5,5)index = [[0, 1],[1,2]]smu = sess.run(tf.gather(mu,index))ssigma = sess.run(tf.gather(sigma,index))print(smu)print(ssigma)print(ssigma.shape)...原创 2018-12-04 18:32:47 · 220 阅读 · 0 评论 -
tensorflow实现正则化 来避免训练过拟合
L1 和 L2 正则化对神经网络中之后连接权重做限制,比如对只有一个隐层的神经网络做L1正则:reset_graph()n_inputs = 28 * 28 # MNISTn_hidden1 = 300n_outputs = 10learning_rate = 0.01X = tf.placeholder(tf.float32, shape=(None, n_inputs),...原创 2018-06-13 20:49:50 · 4902 阅读 · 0 评论 -
tf.layers.Dense
Class DenseInherits From: Layer . Defined in tensorflow/python/layers/core.py.This layer implements the operation: outputs = activation(inputs * kernel + bias) Where activation is the activation f...原创 2018-06-06 19:05:59 · 1110 阅读 · 0 评论 -
tf.layers.dropout 和tf.nn.dropout区别
tf.layers.dropout 和tf.nn.dropout区别 The only differences in the two functions aretf.nn.dropout has parameter keep_prob: “Probability that each element is kept”tf.layers.dropout has parameter rat...转载 2018-06-05 16:58:11 · 2452 阅读 · 0 评论 -
简单理解CNNs的结构,转置卷积 ,附上tensorflow实现
Written by title date zhengchu1994 《A guide to convolution arithmetic for deep learning》 2018-05-26 15:46:30仿射变换(affine transformations)定义:即向量乘上矩阵产生的输出加上bias之后投进激活函数。缺...原创 2018-06-05 08:27:50 · 1114 阅读 · 0 评论 -
15-tensorflow实现各种自编码器及技巧
用编码器做PCA隐层的特点:线性激活函数代码:预先声明的函数和包# To support both python 2 and python 3from __future__ import division, print_function, unicode_literals# Common importsimport numpy as npimport osimpor...原创 2018-06-05 07:56:07 · 928 阅读 · 0 评论 -
11-训练深度神经网络的一些技巧
梯度消失和梯度爆炸解决办法:Xavier初始化和He初始化ReLU的优点和缺点隐层中使用激活函数的策略Batch Normalization梯度修剪梯度消失和梯度爆炸在反向传播算法计算cost函数的对每个参数的梯度误差之后,在更新参数的时候,随着越来越到低层,梯度越来越小, 最后导致lower layer的连接权重最后变化很小,甚至不变。然后训练持续下去一直得不...原创 2018-06-11 16:51:08 · 767 阅读 · 0 评论 -
tensorflow :GraphKeys.REGULARIZATION_LOSSES
tensorflow Regularizerstensorflow中对参数使用正则项分为两步: 1. 创建一个正则方法(函数/对象) 2. 将这个正则方法(函数/对象),应用到参数上参考:https://blog.csdn.net/u012436149/article/details/70264257就下面的这里改一下,举个例子:在使用tf.get_variable()...原创 2018-06-03 16:25:47 · 5996 阅读 · 1 评论 -
tensorflow:tf.Graph
Class Graph - A TensorFlow computation, represented as a dataflow graph.一个Graph 包含很多tf.Operation 对象( represent units of computation;)和tf.Tensor 对象 (represent the units of data that flow between op...原创 2018-06-03 15:40:26 · 517 阅读 · 0 评论 -
tensorflow API: tf.nn.dropout
import tensorflow as tfx = [1.0, 0.5, 0.75, 0.25, 0.2, 0.8, 0.4, 0.6]dropout = tf.nn.dropout(x, 0.5)with tf.Session() as sess: print(sess.run(dropout))[2. 1. 1.5 0. 0.4 1.6 0.8 0. ]原创 2018-05-26 20:03:22 · 252 阅读 · 0 评论 -
TensorFlow 中 MNIST 数据集的使用
一、数据集的获取 TensorFLow 对 MNIST 数据集做了封装,让我们更加方便的使用。from tensorflow.examples.tutorials.mnist import input_data# 读取数据集,第一次TensorFlow会自动下载数据集到下面的路径中, label 采用 one_hot 形式 # la...转载 2018-05-15 21:12:33 · 2610 阅读 · 0 评论 -
tensorflow-协调器
修改了代码跑不出来,可能版本变了? – 即内存队列前,有一个文件队列,文件队列存放的参与训练的文件名,设为N个epoch,则文件名队列中有N个批次的所有文件名。 tf.train.slice_input_producer# -*- coding:utf-8 -*- import tensorflow as tf import numpy as np # 样本个数 ...原创 2018-05-25 07:24:12 · 397 阅读 · 0 评论 -
tensorflow的变量集合
由于 TensorFlow 程序的未连接部分可能需要创建变量,因此能有一种方式访问所有变量有时十分受用。为此,TensorFlow 提供集合,它们是张量或其他对象(如 tf.Variable 实例)的命名列表。默认情况下,每个 tf.Variable 都放置在以下两个集合中:* tf.GraphKeys.GLOBAL_VARIABLES - 可以在多个设备共享的变量,* tf.GraphKey...转载 2018-05-25 07:14:58 · 899 阅读 · 0 评论 -
tensorflow API:tf.constant_initializer
Args: value: 一个scalar, list 或者 tuple或者一个 n维numpy array.初始的variable的全部元素都会设定为相应的值 。 dtype:数据类型 官网例子: >>> import numpy as np >>> import tensorflow as tf >>> value...原创 2018-05-07 16:26:22 · 7225 阅读 · 0 评论 -
tensorflow API:tf.nn.l2_loss
tf.nn.l2_loss( t, name=None)Args:t: 一个Tensor. 其types为: half, bfloat16, float32, float64. name: A name for the operation (optional).作用:不使用sqrt计算张量的L2范数的一半:output = sum(t ** 2) / 2...原创 2018-05-07 16:05:40 · 1093 阅读 · 0 评论 -
tensorflow基本数据类型和基本算数操作
DataTypes in tensorflowTensors can take up any one of the datatypes Datatype Python type DescriptionDT_INT8 tf.int8 signed integer of 8 bitsDT_INT16 tf.int16 signed integer of 16 bits...转载 2018-06-09 08:56:55 · 1045 阅读 · 0 评论 -
14-循环神经网络及tensorflow
Recurrent Neural Networks循环神经网络很像前向神经网络,但是不同的是神经元有连接回指。循环神经网络用LSTM和GRU单元解决梯度爆炸\消失问题循环神经元(Recurrent Neurons)如图左边,一个循环神经元可以把自己的输出,作为自身的输入,但是这个输入是上一个时间戳(previous time step)的输出结果,如果照着时间戳展开(unro...原创 2018-06-18 17:15:09 · 585 阅读 · 0 评论 -
tensorflow API:tf.norm
tf.normtf.norm( tensor, ord='euclidean', axis=None, keepdims=None, name=None, keep_dims=None)作用:计算向量,矩阵的范数。参数:tensor: 要计算的张量。ord:指定做什么样的范数计算。支持 'fro', 'euclidean', 1, 2...原创 2018-10-21 22:25:44 · 4797 阅读 · 0 评论 -
tensorflow API:tf.reshape
i = tf.random_normal([3,3])reshape = tf.reshape(i,[-1])with tf.Session() as sess: print(sess.run(i)) print(sess.run(reshape))[[ 1.1606925 1.5120114 -0.98648375] [-1.5425496 0.447407...原创 2018-10-21 20:36:07 · 232 阅读 · 0 评论 -
tensorflow API:tf.map_fn
tf.map_fn( fn, elems, dtype=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, name=None)作用:map on the list of tensors unpacked from ...转载 2018-10-22 21:02:28 · 949 阅读 · 0 评论 -
tensorflow: session开始对前tensor做一些处理
tf.boolean_mask这个操作可以用于留下指定的元素,类似于numpy的操作。import numpy as nptensor = tf.range(4)mask = np.array([True, False, True, False])bool_mask = tf.boolean_mask(tensor, mask)print sess.run(bool_mask)[0 ...原创 2018-10-22 09:26:56 · 227 阅读 · 0 评论 -
tf.add_n函数的用法
tf.add_n([p1, p2, p3…])函数是实现一个列表的元素的相加。就是输入的对象是一个列表,列表里的元素可以是向量,矩阵,等例如:import tensorflow as tf;import numpy as np; input1 = tf.constant([1.0, 2.0, 3.0])input2 = tf.Variable(tf.random_uniform([3]...转载 2018-09-28 14:19:24 · 889 阅读 · 0 评论 -
稀疏标签的交叉熵 :tensorflow
熵 :离散形式: H(X)≡−∑k=1KP(X=k)logP(X=k)H(X)≡−∑k=1KP(X=k)logP(X=k)H(X)\equiv - \sum_{k=1}^KP(X=k)\log{P(X=k)}KL散度:KL(P||Q)=∑k=1KPklogPkQk=∑k=1KPklogPk−∑k=1KPklogQk=−H(P)+H(P,Q)//负熵+交叉熵KL(P||Q)=...原创 2018-09-15 13:28:47 · 1712 阅读 · 0 评论 -
tensorflow API:tf.assign_add
tf.assign_add( ref, value, use_locking=None, name=None)Update 'ref' by adding 'value' to it.This operation outputs “ref” after the update is done. This makes it easier to chain o...原创 2018-07-02 13:26:18 · 963 阅读 · 0 评论 -
转:tensorflowAPI: ConfigProto
tensorflow ConfigPrototf.ConfigProto一般用在创建session的时候。用来对session进行参数配置with tf.Session(config = tf.ConfigProto(...),...)1#tf.ConfigProto()的参数log_device_p...转载 2018-06-11 07:36:40 · 349 阅读 · 0 评论 -
tf.nn.sigmoid 和tf.sigmoid是一样的
尽量用tf.sigmoid,因为tf.nn.sigmoid之类的可能被移除。 参考:https://stackoverflow.com/questions/44949292/is-there-a-difference-between-activations-functions-in-tensorflow-tf-nn-tanh-vs...翻译 2018-06-10 10:22:43 · 15422 阅读 · 1 评论 -
tensorflow API:tf.set_random_seed同一随机种子不改变的设置
会话级种子设置随机函数的seed参数,对应的变量可以跨session生成相同的随机数:例子tf.reset_default_graph()a = tf.random_uniform([1], seed=1)b = tf.random_normal([1])# Repeatedly running this block with the same graph will gen...原创 2018-06-10 00:12:15 · 6077 阅读 · 1 评论 -
tensorflow API:tf.transpose
tf.transpose( a, perm=None, name='transpose', conjugate=False)作用:转置、共轭转置等。 参数perm : returned tensor’s dimension i will correspond to the input dimension perm[i]例子:test = tf....原创 2018-06-16 17:50:58 · 226 阅读 · 0 评论 -
tensorflow API:tf.unstack
tf.unstack( value, num=None, axis=0, name='unstack')作用:解包:test = tf.random_normal([3,2],dtype=tf.float32)with tf.Session() as sess: #默认axis=0 print(sess.run([test,tf.unst...原创 2018-06-16 17:20:36 · 268 阅读 · 0 评论 -
tensorflow API:梯度修剪apply_gradients和compute_gradients
梯度修剪主要避免训练梯度爆炸和消失问题tf.train.XXXOptimizercompute_gradientsArgs:Returns:apply_gradientsArgs:Returns:例子:梯度修剪主要避免训练梯度爆炸和消失问题tf.train.XXXOptimizerapply_gradients和compute_gradients...原创 2018-06-09 14:27:40 · 29543 阅读 · 4 评论 -
在jupyter中运行tensorboard可视化的代码
from IPython.display import clear_output, Image, display, HTMLdef strip_consts(graph_def, max_const_size=32): """Strip large constant values from graph_def.""" strip_def = tf.GraphDef() ...原创 2018-06-16 14:18:10 · 3130 阅读 · 0 评论 -
tensorflow API: tf.multiply
tf.multiply:(1)multiply这个函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘。x=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]]) y=tf.constant([[1 ,0 ,1.0],[2,0,1.0],[3 ,0,1.0]])#注意这里这里x,y要有相同的数据类型,不然就会因为数据...原创 2018-05-07 15:54:58 · 871 阅读 · 0 评论 -
tensorflow API:tf.nn.softmax_cross_entropy_with_logits()等各种损失函数
Loss function* 在机器学习中,loss function(损失函数)也称cost function(代价函数),是用来计算预测值和真实值的差距。* 然后以loss function的最小值作为目标函数进行反向传播迭代计算模型中的参数,这个让loss function的值不断变小的过程称为优化。- 设总有N个样本的样本集为(X,Y)=(xi,yi)(X,Y)=(...转载 2018-04-28 21:52:27 · 2339 阅读 · 0 评论 -
机器学习实用指南:Chapter 9 – Up and running with TensorFlow
Linear RegressionUsing the Normal Equation# 再python2和3上都支持from __future__ import division, print_function, unicode_literalsimport numpy as npimport osimport tensorflow as tf# 让botebook的输入不会改变def r原创 2017-12-31 14:31:41 · 612 阅读 · 0 评论 -
tensorflow API: tf.get_variable
get_variable( name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate原创 2017-12-31 13:35:29 · 335 阅读 · 0 评论 -
tensorflow机器学习项目实战记录(聚类)
import sklearn.datasetsimport tensorflow as tfimport timeimport matplotlibimport matplotlib.pyplot as pltimport numpy as np数据集描述和加载DATA_TYPE = 'blobs'N=200# Number of clusters, if we choose ci原创 2017-12-31 11:39:27 · 1020 阅读 · 0 评论 -
tensorflow API: tf.unsorted_segment_sum
unsorted_segment_sum( data, segment_ids, num_segments, name=None)Computes a tensor such that (output[i] = sum_{j…} data[j…] where the sum is over tuples j… such that segment_ids[j…] ==原创 2017-12-15 15:16:34 · 2122 阅读 · 2 评论 -
tensorflow API:tf.slice
slice(input_, begin, size, name=None) Extracts a slice from a tensor.This operation extracts a slice of size size from a tensor input starting at the location specified by begin. 从begin位置开始,在输入的原创 2017-12-14 21:38:55 · 783 阅读 · 0 评论 -
tensorflow API:tf.tile
tile(input, multiples, name=None) Constructs a tensor by tiling a given tensor.This operation creates a new tensor by replicating `input` `multiples` times.重复input一共multiples次数生成新的tensor The ou原创 2017-12-14 18:09:13 · 321 阅读 · 0 评论 -
tensorflow API:tf.Variable
原文:官网一个Variable变量通过run()保存流程图中的状态;创建一个变量,即创建一个Variable类的实例加入graph中Variable()构造器要求变量有初始化值,初始化值给出了Tensor的类型和形状。变量创建以后,变量的type和shape都被固定,变量的值可以通过assign方法改变。如果想改变变量的shape,通过使用assign方法,并且设置validate_shape =翻译 2017-12-22 15:34:50 · 324 阅读 · 0 评论