Tri-Party Deep Network Representation


layout title date
post 《Tri-Party Deep Network Representation》 2018-05-13 08:01

问题定义

网络表示为 G = ( V , E , D , C ) G=(V,E,D,\mathcal C) G=(V,E,D,C),其中V是点集合,E是边集合,D是由每个点上的文本(text)构成的集合, C = L ⋃ U \mathcal C=L\bigcup U C=LU是类别标签集合,其中L是网络中有标签的节点集合,U则是无标签的节点集合。

如果 C = ∅ \mathcal C=\emptyset C=,则本文的方法成了无监督学习的方法。

##前件

  1. skip-gram模型
    skip-gram的思想是给定当前词汇(current word),在一定的窗口大小下(certain window),预测上下文单词(context or surrounding words)。
    最大化log-likelihood公式:
    (1) L = ∑ t = 1 T l o g P ( w t − b : w t + b ∣ w t ) \mathcal L=\sum_{t=1}^Tlog \mathbb P(w_{t-b}:w_{t+b}|w_t) \tag{1} L=t=1TlogP(wtb:wt+bwt)(1)

其中b是窗口大小, w t w_t wt表示词汇t。 P ( w t − b : w t + b ∣ w t ) \mathbb P(w_{t-b}:w_{t+b}|w_t) P(wtb:wt+bwt) 等于:
(2) ∏ − b ≤ j ≤ b , j ≠ 0 P ( w t + j ∣ w t ) \prod_{-b \le j \le b,j\neq0}\Bbb P(w_{t+j}|w_t) \tag{2} bjb,j̸=0P(wt+jwt)(2)

再对给定词汇的上下文做i.i.d.假设,则 P ( w t + j ∣ w t ) \Bbb P(w_{t+j|w_t}) P(wt+jwt) 的计算是:
(3) P ( w t + j ∣ w t ) = e x p ( V w t T V w t + j ′ ) ∑ w = 1 W e x p ( V w t T V w ′ ) \Bbb P(w_{t+j}|w_t)=\frac{exp(V_{w_t}^T V_{w_{t+j}}^{'} )}{\sum_{w=1}^Wexp(V_{w_t}^T V_{w}^{'} )} \tag{3} P(wt+jwt)=w=1Wexp(Vw

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值