HDU 4609 3-idiots 计数+FFT

题意:n个数的序列a 问从中选出三个数构成三角形的概率?
n,a[i]<=1e5.
暴力O(n^3)的做法肯定是TLE的.
排序后,我们枚举最后一个选的数为下标i,则前两个数下标j,k<i && 其之和大于a[i].(a[i]+a[j]肯定是>a[k])
有多少对这样的数? 先求有多少对数的和为a[i],利用前缀和就能求出大于a[i]个数.
令 c[k]^x^k表示数k的个数有c[k]个.我们可以列出两个相同的生成函数,其乘积第k项的系数也就是和为k的方法数(母函数).
因为多项式(生成函数)最多有1e5项,用fft优化多项式相乘O(nlogn).

现在知道了两个数和为i的方法数 剩下的要求下标满足,按题意扣掉即可.


#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> ii;
const double pi=acos(-1.0);
const int N=6e5+20,inf=0x3f3f3f3f;
struct Complex {
    double r , i ;
    Complex () {}
    Complex ( double r , double i ) : r ( r ) , i ( i ) {}
    Complex operator + ( const Complex& t ) const {
        return Complex ( r + t.r , i + t.i ) ;
    }
    Complex operator - ( const Complex& t ) const {
        return Complex ( r - t.r , i - t.i ) ;
    }
    Complex operator * ( const Complex& t ) const {
        return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
    }
}x1[N];
int a[N];
ll num[N],sum[N];
void change(Complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1;i++)
    {
        if(i < j)swap(y[i],y[j]);
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k)j += k;
    }
}
void fft(Complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2;h <= len;h <<= 1)
    {
        Complex wn(cos(-on*2*pi/h),sin(-on*2*pi/h));
        for(int j = 0;j < len;j += h)
        {
           Complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                Complex u = y[k];
                Complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
int main()
{
	ll T,n;
	cin>>T;
	while(T--)
	{
		scanf("%I64d",&n);
		memset(num,0,sizeof(num));
		for(int i=0;i<n;i++)
			scanf("%d",&a[i]),num[a[i]]++;
		sort(a,a+n);
		int len1=a[n-1]+1;
		int len=1;
		while(len<2*len1)//2^k
			len<<=1;
		 for(int i = 0;i < len1;i++)
            x1[i] = Complex(num[i],0);
        for(int i = len1;i < len;i++)
            x1[i] = Complex(0,0);
		fft(x1,len,1);
		for(int i=0;i<len;i++)
			x1[i]=x1[i]*x1[i];//sample c[i]=a[i]*b[i].
		fft(x1,len,-1);//IFFT
		
		for(int i=0;i<len;i++)
			num[i]=(ll)(x1[i].r+0.5);
		len=2*a[n-1];
		
		for(int i=0;i<n;i++)
			num[a[i]+a[i]]--;//same
		for(int i=1;i<=len;i++)
			num[i]/=2;//combination
			
		sum[0]=0;
		for(int i=1;i<=len;i++)
			sum[i]=sum[i-1]+num[i];
		ll cnt=0;
		for(ll i=0;i<n;i++)
		{
			cnt+=sum[len]-sum[a[i]];
			cnt-=(ll)(n-i-1)*i;//large and small
			cnt-=(n-1);//i and anyone
			cnt-=(ll)(n-i-1)*(n-i-2)/2;//two large
		}
		ll tot=n*(n-1)*(n-2)/6;
		printf("%.7lf\n",(double)cnt/tot);
	
	}
	return 0;
}

FFT优化多项式乘法:

点值表达式相乘O(N) ,但是要先算出a[i],b[i]的n个sample,然后相乘算出c[i]. 本来要O(n^2)  利用单位复数根性质 fft优化到O(nlogn) ,

在IFFT将c[i] sample变换的成c的多项式系数形式.






  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值