HDU 5212 Code GCD容斥(套路).

DU 5212
题意:给出长度为n的序列a,求定义f(i,j)为gcd(a[i],a[j])*(gcd(a[i],a[j])-1).
求f(i,j)的累加和[i=1..n,j=1...n] 答案模mod.
n,a[i]<=1e4,


直接遍历序列显然是TLE的.a[i]<=1e4 我们枚举每个数作为gcd时的贡献.
当x作为gcd 算出x的倍数有num个 则任选两个方案为num^2 .其中重复为gcd=2x,3x..kx产生的贡献

用dp[x]来记录x为gcd的实际(i,j)方案数,从大到小计算即可.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e4+5,mod=1e4+7;
int n,a[N];
ll dp[N],fre[N];
int main()
{
    while(cin>>n)
    {
        int mx=0;
        memset(fre,0,sizeof(fre));
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]),mx=max(mx,a[i]),fre[a[i]]++;
        ll ans=0;
        for(int i=mx;i>=1;i--)
        {
            ll cnt=0,ex=0;
            for(int j=i;j<=mx;j+=i)
                cnt+=fre[j];
            cnt=(cnt*cnt)%mod;
            for(int j=i+i;j<=mx;j+=i)
                ex=(ex+dp[j])%mod;
            dp[i]=(cnt-ex+mod)%mod;
            ans=(ans+dp[i]*i*(i-1)%mod)%mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值