CINTA第六次作业

文章详细解析了ChineseRemainderTheorem(CRT)在解决同余方程中的应用,包括求解具体数值问题和编写用于求解的Python/C语言程序模板。涉及乘法逆元的计算以及如何将多个同余方程合并求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CINTA第六次作业

第十章

题1

题目:
运用 CRT 求解:
x ≡ 8 ( m o d 11 ) x ≡ 8 \pmod {11} x8(mod11)
x ≡ 3 ( m o d 19 ) x ≡ 3 \pmod {19} x3(mod19)
解答:
19 19 19 11 11 11 的乘法逆元为 7 7 7, 11 11 11 19 19 19 的乘法逆元为 7 7 7,
利用 CRT 有:
x ≡ 8 × 19 × 7 + 3 × 11 × 7 ≡ 41 ( m o d 201 ) x\equiv 8\times19 \times 7+3\times11\times7\equiv41\pmod{201} x8×19×7+3×11×741(mod201)

题2

题目:
运用 CRT 求解:
x ≡ 1 ( m o d 5 ) x ≡ 1 \pmod 5 x1(mod5)
x ≡ 2 ( m o d 7 ) x ≡ 2 \pmod 7 x2(mod7)
x ≡ 3 ( m o d 9 ) x ≡ 3 \pmod 9 x3(mod9)
x ≡ 4 ( m o d 11 ) x ≡ 4 \pmod {11} x4(mod11)
解答:
设上述第 i i i 条同余方程为 x ≡ a i ( m o d m i ) , i ∈ { 1 , 2 , 3 , 4 } x\equiv a_i\pmod {m_i}, i\in\{1,2,3,4\} xai(modmi),i{1,2,3,4}

a i a_i ai b i = ( ∏ 1 n m i ) / m i b_i=(\prod_{1}^{n}m_i)/m_i bi=(1nmi)/mi b i b_i bi 模 m 的乘法逆元
16932
24953
33854
43158


x ≡ ∑ i = 1 n a i b i b i − 1 ≡ 1731 ( m o d 3465 ) x\equiv \sum_{i=1}^n a_ib_ib_i^{-1}\equiv1731\pmod {3465} xi=1naibibi11731(mod3465)

题3

题目:手动计算 200 0 2019 ( m o d 221 ) 2000^{2019} \pmod {221} 20002019(mod221),不允许使用电脑或者其他电子设备。[提示:这是一道看上去与中国剩余定理无关的计算题。]
解答:
利用群同构转化即可.

n = p q n = pq n=pq p > 1 p > 1 p>1 q > 1 q > 1 q>1 是两个互素的正整数,则有: Z n ∗ ≅ Z p ∗ × Z q ∗ . Z_n^{*}\cong Z_p^{*}\times Z_q^{*}. ZnZp×Zq.

由于 221 = 13 × 17 221=13\times17 221=13×17,再由上述命题可知: Z 221 ∗ ≅ Z 13 ∗ × Z 17 ∗ Z_{221}^{*}\cong Z_{13}^{*}\times Z_{17}^{*} Z221Z13×Z17.
故: 2000 ↔ ( 2000   m o d   13 , 2000   m o d   17 ) ↔ ( 11 , 11 ) 2000\leftrightarrow (2000\bmod13,2000\bmod17)\leftrightarrow (11,11) 2000(2000mod13,2000mod17)(11,11).
( 11 , 11 ) 2019 = ( 1 1 12 × 168 + 3 , 1 1 16 × 126 + 3 ) = ( 1 1 3 , 1 1 3 ) = ( 5 , 5 ) (11,11)^{2019}=(11^{12\times168+3},11^{16\times126+3})=(11^3,11^3)=(5,5) (11,11)2019=(1112×168+3,1116×126+3)=(113,113)=(5,5),其中第二个等号由费尔马小定理可知.
不难发现 5 ↔ ( 5 , 5 ) 5\leftrightarrow (5,5) 5(5,5),故答案为 5 5 5.

题7

题目:实现一个利用 CRT 求解同余方程的程序(Python 或者 C 语言都可以)。
代码如下:

//一共n条同余方程,同余方程为 x≡a(mod b)
int n, a[15], b[15];

//(套egcd模板)求x的乘法逆元
int mul_inverse(int x, int a)
{
    int r0 = 1, s0 = 0, r1 = 0, s1 = 1;
    while(a)
    {
        int tr = r0, ts = s0, t = x % a, q = x / a;
        r0 = r1, s0 = s1, x = a;
        r1 = tr - q * r1, s1 = ts - q * s1, a = t;
    }
    return r0;
}

//套crt公式
long long crt(int a[], int b[], int n)
{
    long long ans = 0;
    long long B = 1;//B是同余方程所有b的乘积
	for(int i = 0; i < n; i ++ ) B *= b[i];
    for(int i = 0; i < n; i ++ )
    {
        ans += a[i] * (B / b[i]) * mul_inverse(B / b[i] % b[i], b[i]) % B;
    }
    return ans % B;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值