CINTA第五次作业

CINTA第五次作业

第九章

题5

题目:定义映射 ϕ : G ↦ G 为: g ↦ g 2 ϕ : G \mapsto G 为:g \mapsto g^2 ϕ:GG为:gg2。请证明 ϕ ϕ ϕ 是一种群同态当且仅当 G G G 是阿贝尔群。
证明思路:
ϕ ϕ ϕ 是一种群同态
⇔ ∀ a , b ∈ G , ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \Leftrightarrow\forall a, b\in G,\phi(ab)=\phi(a)\phi(b) a,bG,ϕ(ab)=ϕ(a)ϕ(b)
⇔ ( a b ) 2 = a 2 b 2 ⇔ a b a b = a a b b \Leftrightarrow(ab)^2=a^2b^2\Leftrightarrow abab=aabb (ab)2=a2b2abab=aabb
⇔ ∀ a , b ∈ G , b a = a b \Leftrightarrow \forall a,b\in G,ba=ab a,bG,ba=ab
⇔ \Leftrightarrow G G G 符合交换律, G G G 是阿贝尔群.
证毕.

题6

题目:设 ϕ : G ↦ H ϕ : G \mapsto H ϕ:GH 是一种群同态。请证明:如果 G G G 是循环群,则 ϕ ( G ) ϕ(G) ϕ(G) 也是循环群;如果 G G G 是交换群,则 ϕ ( G ) ϕ(G) ϕ(G) 也是交换群。
证明思路:
①证明:如果 G G G 是循环群,则 ϕ ( G ) ϕ(G) ϕ(G) 也是循环群。
欲证原命题,只要证明 ϕ ( G ) = ⟨ ϕ ( g ) ⟩ \phi(G)=\left \langle \phi(g) \right \rangle ϕ(G)=ϕ(g).
由于 ϕ \phi ϕ 是同态映射,则 ϕ ( G ) \phi(G) ϕ(G) 是群,由封闭性显然有 ⟨ ϕ ( g ) ⟩   ⊆ ϕ ( G ) \left \langle \phi(g) \right \rangle\ \subseteq \phi(G) ϕ(g) ϕ(G).
故接下来只要证 ϕ ( G ) ⊆ ⟨ ϕ ( g ) ⟩ \phi(G) \subseteq \left \langle \phi(g) \right \rangle ϕ(G)ϕ(g).
即证: ∀ a ∈ ϕ ( G ) , ∃ k ∈ Z , a = ϕ ( g ) k \forall a \in \phi(G),\exists k\in \Z,a=\phi(g)^k aϕ(G),kZ,a=ϕ(g)k


由于 G G G 是循环群,故 G G G 必然有生成元,记作 g g g,则:
∀ a ∈ G , ∃ k ∈ Z , a = g k \forall a\in G,\exists k\in \Z,a=g^k aGkZ,a=gk
由于 ϕ \phi ϕ 是群同态,故 ϕ \phi ϕ 必然是映射,则:
∀ a ∈ ϕ ( G ) , ∃ b ∈ G , a = ϕ ( b ) \forall a\in \phi(G),\exists b \in G,a=\phi(b) aϕ(G),bG,a=ϕ(b)
进而有:
∀ a ∈ ϕ ( G ) , ∃ b ∈ G , ∃ k ∈ Z , b = g k , a = ϕ ( b ) = ϕ ( g k ) \forall a\in \phi(G),\exists b\in G, \exists k\in \Z,b=g^k,a=\phi(b)=\phi(g^k) aϕ(G),bG,kZ,b=gk,a=ϕ(b)=ϕ(gk)
由于 ϕ \phi ϕ 是群同态,故:
ϕ ( g k ) = ϕ ( g k − 1 ) ϕ ( g ) = ϕ ( g k − 2 ) ϕ ( g ) ϕ ( g ) = ⋯ = ϕ ( g ) k \phi(g^k)=\phi(g^{k-1})\phi(g)=\phi(g^{k-2})\phi(g)\phi(g)=\cdots =\phi(g)^k ϕ(gk)=ϕ(gk1)ϕ(g)=ϕ(gk2)ϕ(g)ϕ(g)==ϕ(g)k
即:
∀ a ∈ ϕ ( G ) , ∃ k ∈ Z , a = ϕ ( g ) k \forall a \in \phi(G),\exists k\in \Z,a=\phi(g)^k aϕ(G),kZ,a=ϕ(g)k
从而原命题得证.


②证明:如果 G G G 是交换群,则 ϕ ( G ) ϕ(G) ϕ(G) 也是交换群.
容易证明 ϕ ( G ) \phi(G) ϕ(G) 是一个群,对其检验群公理即可,不再赘述.
接着证明 ϕ ( G ) \phi(G) ϕ(G) 满足交换律即可,即证明:
∀ a , b ∈ ϕ ( G ) , a b = b a \forall a,b\in \phi(G),ab=ba a,bϕ(G),ab=ba
由于 ϕ \phi ϕ 是群同态,故:
∀ a , b ∈ ϕ ( G ) , ∃ g 1 , g 2 ∈ G , a = ϕ ( g 1 ) , b = ϕ ( g 2 ) \forall a,b\in \phi(G),\exists g_1,g_2\in G,a=\phi(g_1),b=\phi(g_2) a,bϕ(G),g1,g2G,a=ϕ(g1),b=ϕ(g2)
欲证原命题只需证明: ϕ ( g 1 ) ϕ ( g 2 ) = ϕ ( g 2 ) ϕ ( g 1 ) \phi(g_1)\phi(g_2)=\phi(g_2)\phi(g_1) ϕ(g1)ϕ(g2)=ϕ(g2)ϕ(g1)
由于 ϕ \phi ϕ 是群同态,即证: ϕ ( g 1 g 2 ) = ϕ ( g 2 g 1 ) \phi(g_1g_2)=\phi(g_2g_1) ϕ(g1g2)=ϕ(g2g1)
由于 G G G 是交换群,故:
∀ g 1 , g 2 ∈ G , g 1 g 2 = g 2 g 1 \forall g_1,g_2\in G,g_1g_2=g_2g_1 g1,g2G,g1g2=g2g1
ϕ ( g 1 g 2 ) = ϕ ( g 2 g 1 ) \phi(g_1g_2)=\phi(g_2g_1) ϕ(g1g2)=ϕ(g2g1),原命题得证

题7

题目:
证明:如果 H H H 是群 G G G 上指标为 2 2 2 的子群,则 H H H G G G 的正规子群。
证明思路:此题与第8章题3一致。
分两种情况讨论:
①若 g ∈ H g\in H gH,则 H = g H = H g H=gH=Hg H=gH=Hg.
②若 g ∈ G 且 g ∉ H g\in G且g\notin H gGg/H,则由陪集的同一或不相交性可知: g H = G − H , H g = G − H gH=G-H,Hg=G-H gH=GH,Hg=GH
故: g H = H g gH=Hg gH=Hg.

题8

题目:给定任意群 G G G H H H 是群 G G G 的正规子群。请证明,如果群 G G G 是阿贝尔群,则商群 G / H G/H G/H 也是阿贝尔群。
证明思路:只要证明: ∀ a , b ∈ G / H , a b = b a \forall a,b \in G/H,ab=ba a,bG/H,ab=ba
由于 G / H G/H G/H 是商群,故: ∀ a , b ∈ G / H , ∃ g 1 , g 2 ∈ G , a = g 1 H , b = g 2 H \forall a,b \in G/H,\exists g_1,g_2\in G,a=g_1H,b=g_2H a,bG/H,g1,g2G,a=g1H,b=g2H
接下来证明 ( g 1 H ) ( g 2 H ) = ( g 2 H ) ( g 1 H ) (g_1H)(g_2H)=(g_2H)(g_1H) (g1H)(g2H)=(g2H)(g1H)
( g 1 H ) ( g 2 H ) = ( g 1 g 2 ) H , ( g 2 H ) ( g 1 H ) = ( g 2 g 1 ) H (g_1H)(g_2H)=(g_1g_2)H,(g_2H)(g_1H)=(g_2g_1)H (g1H)(g2H)=(g1g2)H,(g2H)(g1H)=(g2g1)H,又群 G G G 是阿贝尔群,则 g 1 g 2 = g 2 g 1 g_1g_2=g_2g_1 g1g2=g2g1,故 ( g 1 g 2 ) H = ( g 2 g 1 ) H (g_1g_2)H=(g_2g_1)H (g1g2)H=(g2g1)H,
从而 ( g 1 H ) ( g 2 H ) = ( g 2 H ) ( g 1 H ) (g_1H)(g_2H)=(g_2H)(g_1H) (g1H)(g2H)=(g2H)(g1H) 得证,进而原命题得证

题9

题目:给定任意群 G G G H H H 是群 G G G 的正规子群。请证明,如果群 G G G 是循环群,则商群 G / H G/H G/H也是循环群。
证明思路:
g g g 是群 G G G 的生成元,证明 G / H = ⟨ g H ⟩ G/H=\left \langle gH \right \rangle G/H=gH 即可.
因为 g H ∈ G / H gH\in G/H gHG/H,由封闭性即可知 ⟨ g H ⟩ ⊆ G / H \left \langle gH \right \rangle \subseteq G/H gHG/H,故接下来只要证 G / H ⊆ ⟨ g H ⟩ G/H \subseteq \left \langle gH \right \rangle G/HgH
容易知道: ∀ a ∈ G / H , ∃ g ′ ∈ G , a = g ′ H \forall a\in G/H,\exists g'\in G,a=g'H aG/H,gG,a=gH
G G G 是循环群, g g g G G G 的生成元,则 ∀ g ′ ∈ G , ∃ k ∈ Z , g ′ = g k \forall g' \in G,\exists k \in \Z,g'=g^k gG,kZ,g=gk
故: ∀ a ∈ G / H , ∃ k ∈ Z , a = g k H = ( g H ) k \forall a \in G/H, \exists k\in \Z,a=g^kH=(gH)^k aG/H,kZ,a=gkH=(gH)k
即: G / H ⊆ ⟨ g H ⟩ G/H \subseteq \left \langle gH \right \rangle G/HgH
进而 G / H G/H G/H 是循环群.

  • 20
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,这里是50种不同国家的语言表达“我爱你”: 1. English - I love you 2. Spanish - Te quiero 3. French - Je t'aime 4. German - Ich liebe Dich 5. Italian - Ti amo 6. Portuguese - Eu te amo 7. Russian - Ya lyublyu tebya 8. Chinese (Mandarin) - Wo ai ni 9. Japanese - Aishiteru 10. Korean - Sarang hae 11. Arabic - Ana behibak (to a male) / Ana behibek (to a female) 12. Dutch - Ik hou van je 13. Danish - Jeg elsker dig 14. Swedish - Jag älskar dig 15. Norwegian - Jeg elsker deg 16. Finnish - Minä rakastan sinua 17. Polish - Kocham Cię 18. Czech - Miluji Tě 19. Hungarian - Szeretlek 20. Bulgarian - Obicham te 21. Greek - S'ayapo 22. Turkish - Seni seviyorum 23. Romanian - Te iubesc 24. Croatian - Volim te 25. Serbian - Volim te 26. Slovenian - Ljubim te 27. Slovak - Milujem Ťa 28. Estonian - Ma armastan sind 29. Latvian - Es tevi mīlu 30. Lithuanian - Aš tave myliu 31. Icelandic - Ég elska þig 32. Albanian - Te dua 33. Thai - Phom rak khun (to a male) / Chan rak khun (to a female) 34. Vietnamese - Anh ye^u em (to a female) / Em ye^u anh (to a male) 35. Indonesian - Saya cinta padamu 36. Filipino - Mahal kita 37. Hindi - Main tumse pyar karta hoon 38. Bengali - Ami tomake bhalobashi 39. Urdu - Main tumse muhabbat karta hoon 40. Marathi - Me tujhe pyaar kartaa hoo 41. Punjabi - Main tere pyar da haan 42. Telugu - Nenu ninnu premisthunnanu 43. Tamil - Naan unnai kaadhalikken 44. Malayalam - Njan ninnodenikkoo 45. Kannada - Naanu ninna preetisuttene 46. Gujrati - Hu tane pyar karoo chu 47. Nepali - Ma timilai maya garchu 48. Sinhala - Mama oyata arderyi 49. Burmese - Chit pa de 50. Mongolian - Bi chamd hairtai

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值