CINTA第四次作业

第七章

题2

题目:群 Z 17 ∗ Z_{17}^{*} Z17 有多少个生成元?已知 3 3 3 是其中一个生成元,请问 9 9 9 10 10 10 是否生成元?
解题思路:
原根定理可知: 17 17 17 ϕ ( 17 − 1 ) \phi(17-1) ϕ(171)个原根,即 Z 17 ∗ Z_{17}^{*} Z17 ϕ ( 17 − 1 ) \phi(17-1) ϕ(171)个生成元,利用欧拉公式计算可知 ϕ ( 17 − 1 ) = 16 × 1 2 = 8 \phi(17-1)=16\times \frac{1}{2}=8 ϕ(171)=16×21=8.
故群 Z 17 ∗ Z_{17}^{*} Z17 8 8 8 个生成元.
由以下命题

设群 G = ⟨ g ⟩ G=\left \langle g\right \rangle G=g 是阶为 n n n 的循环群。如果 h = g k h = g^k h=gk,则 o r d ( h ) = n / g c d ( n , k ) ord(h)=n/gcd(n,k) ord(h)=n/gcd(n,k)

可知:取命题中 k k k n n n 互素即可由已知生成元构造另一个生成元.
已知 3 3 3 是其中一个生成元:
注意到 3 3 ≡ 10 ( m o d 17 ) 3^{3}\equiv 10 \pmod{17} 3310(mod17),且 3 3 3 与群的阶 16 16 16 互素,故 10 10 10 是生成元.
注意到 9 8 = 3 16 ≡ 1 ( m o d 17 ) 9^8=3^{16}\equiv 1\pmod{17} 98=3161(mod17),故 9 9 9 不是生成元.

题3

题目: p p p q q q 是两个不同的素数,请问 Z p q Z_{pq} Zpq 有多少个生成元? r r r 是任意正整数,请问 Z p r Z_{p^{r}} Zpr都有多少个生成元?
解题思路:
由以下命题

设群 G = ⟨ g ⟩ G=\left \langle g\right \rangle G=g 是阶为 n n n 的循环群,则群 G G G 中恰有 ϕ ( n ) ϕ(n) ϕ(n) 个生成元。

可知:
Z p q Z_{pq} Zpq ϕ ( p q ) = p q ( 1 − 1 p ) ( 1 − 1 q ) = ( p − 1 ) ( q − 1 ) \phi(pq)=pq(1-\frac{1}{p})(1-\frac{1}{q})=(p-1)(q-1) ϕ(pq)=pq(1p1)(1q1)=(p1)(q1) 个生成元.
Z p r Z_{p^{r}} Zpr ϕ ( p r ) = p r ( 1 − 1 p ) = p r − p r − 1 \phi(p^r)=p^r(1-\frac{1}{p})=p^r-p^{r-1} ϕ(pr)=pr(1p1)=prpr1 个生成元.

题6

题目:
证明:如果群 G G G 没有非平凡子群,则群 G G G 是循环群。
证明思路:
容易验证当 G = { e } G=\{e\} G={e} 时,命题成立.
下面仅讨论 G G G 中除了 e e e 还有其他元素的情况:
任取 g ∈ G ∧ g ≠ e g\in G\wedge g\neq e gGg=e,构造 ⟨ g ⟩ = { g i ∣ i ∈ Z } \left \langle g \right \rangle=\left \{ g^i|i\in\Z\right \} g={giiZ},容易验证其是 G G G 的子群( ⟨ g ⟩ \left \langle g \right \rangle g 同时也是循环群).
由于 G G G 仅有 G G G { e } \{e\} {e} 两个子群,而 ⟨ g ⟩ ≠ { e } \left \langle g \right \rangle\neq \{e\} g={e},故:
G = ⟨ g ⟩ G=\left \langle g \right \rangle G=g
这样就证明了群 G G G 是循环群.

题8

题目:
证明:设 G G G 为任意群,且 g ∈ G g ∈ G gG。如果存在 m , n ∈ Z m, n ∈ \Z m,nZ 使得 g m = 1 g^m = 1 gm=1 g n = 1 g^n = 1 gn=1,则 g d = 1 g^d = 1 gd=1,其中 d = g c d ( m , n ) d = gcd(m, n) d=gcd(m,n)
证明思路:
由Bezout定理知: ∃ a , b ∈ Z , d = a m + b n \exists a,b\in \Z,d=am+bn a,bZ,d=am+bn.
故: g d = g a m + b n = ( g m ) a ( g n ) b = 1 g^{d}=g^{am+bn}=(g^m)^a(g^n)^b=1 gd=gam+bn=(gm)a(gn)b=1,证毕.

第八章

题1

题目:设 G G G 是群, H H H G G G 的子群。任取 g 1 , g 2 ∈ G g_1, g_2 ∈ G g1,g2G,则 g 1 H = g 2 H g_1H = g_2H g1H=g2H 当且仅当 g 1 − 1 g 2 ∈ H g_1^{-1}g_2 ∈ H g11g2H
证明思路:
证明分两个方向:
e e e G G G 的单位元,

⇒ \Rightarrow 方向:由于 g 2 = g 2 e , e ∈ H g_2=g_2e,e\in H g2=g2e,eH,故 g 2 ∈ g 2 H g_2\in g_2H g2g2H.
由于 g 1 H = g 2 H g_1H = g_2H g1H=g2H,故 g 2 ∈ g 1 H g_2\in g_1H g2g1H,进而有: ∃ h ∈ H , g 2 = g 1 h \exists h\in H, g_2=g_1h hH,g2=g1h,即: g 1 − 1 g 2 = h ∈ H g_1^{-1}g_2=h\in H g11g2=hH

⇐ \Leftarrow 方向:由于 g 1 − 1 g 2 ∈ H g_1^{-1}g_2 ∈ H g11g2H,故 ∃ h ∈ H , g 1 − 1 g 2 = h ∈ H \exists h\in H,g_1^{-1}g_2=h\in H hH,g11g2=hH.


要证明 g 1 H = g 2 H g_1H=g_2H g1H=g2H,只需证明: g 1 H ⊂ g 2 H , g 2 H ⊂ g 1 H g_1H\subset g_2H, g_2H\subset g_1H g1Hg2H,g2Hg1H


(1) 先证明 g 1 H ⊂ g 2 H g_1H\subset g_2H g1Hg2H
对此,即证 ∀ a ∈ g 1 H , 有: a ∈ g 2 H \forall a\in g_1H,有:a\in g_2H ag1H,有:ag2H.
由于 a ∈ g 1 H a\in g_1H ag1H,故: ∃ h 1 ∈ H , a = g 1 h 1 \exists h_1 \in H,a=g_1h_1 h1H,a=g1h1
此时不难发现 a = g 1 h 1 = g 2 ( g 2 − 1 g 1 h 1 ) a=g_1h_1=g_2(g_2^{-1}g_1h_1) a=g1h1=g2(g21g1h1),而 g 2 − 1 g 1 h 1 = ( g 1 − 1 g 2 ) − 1 h 1 g_2^{-1}g_1h_1=(g_1^{-1}g_2)^{-1}h_1 g21g1h1=(g11g2)1h1.
由于 H H H 是群且 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H,故 ( g 1 − 1 g 2 ) − 1 ∈ H (g_1^{-1}g_2)^{-1} \in H (g11g2)1H,又 h 1 ∈ H h_1\in H h1H,进而由封闭性可知: g 2 − 1 g 1 h 1 = ( g 1 − 1 g 2 ) − 1 h 1 ∈ H g_2^{-1}g_1h_1=(g_1^{-1}g_2)^{-1}h_1\in H g21g1h1=(g11g2)1h1H.
即: a = g 2 ( g 2 − 1 g 1 h 1 ) 且 g 2 − 1 g 1 h 1 ∈ H a=g_2(g_2^{-1}g_1h_1)且g_2^{-1}g_1h_1\in H a=g2(g21g1h1)g21g1h1H,故 a ∈ g 2 H a\in g_2H ag2H.
从而证明了 g 1 H ⊂ g 2 H g_1H\subset g_2H g1Hg2H
(2) 对于 g 2 H ⊂ g 1 H g_2H\subset g_1H g2Hg1H 类似可证,不再赘述。

题3

题目:如果 G G G 是群, H H H 是群 G G G 的子群,且 [ G : H ] = 2 [G : H] = 2 [G:H]=2,请证明对任意的 g ∈ G , g H = H g g ∈ G,gH = Hg gGgH=Hg
证明思路:
分两种情况讨论:
①若 g ∈ H g\in H gH,则 H = g H = H g H=gH=Hg H=gH=Hg.
②若 g ∈ G 且 g ∉ H g\in G且g\notin H gGg/H,则由陪集的同一或不相交性可知: g H = G − H , H g = G − H gH=G-H,Hg=G-H gH=GH,Hg=GH
故: g H = H g gH=Hg gH=Hg.

题5

题目:设 G G G 是阶为 p q pq pq 的群,其中 p p p q q q 是素数。请证明 G G G 的任意非平凡子群是循环群。
证明思路:
H H H G G G 的非平凡子群,则 ∣ H ∣ ≠ 1 且 ∣ H ∣ ≠ ∣ G ∣ |H|\neq 1且|H|\neq |G| H=1H=G.
拉格朗日定理可知: ∣ G ∣   m o d   ∣ H ∣ = 0 |G|\bmod|H|=0 GmodH=0.
∣ H ∣ = p 或 q |H|=p或q H=pq,即 H H H 是素数阶群,故 H H H 是循环群,原命题得证.

题8

题目:.
编程完成以下工作:对任意给定的一个素数 p p p,求出 Z p ∗ Z ^*_p Zp 的最小生成元。任取一个整数 n n n,对大于 1 1 1 小于 n n n 的所有素数 p p p,求 Z p ∗ Z^∗_p Zp 的最小生成元,并求以上最小生成元集合中最大者所对应的素数 p
代码如下:

import math
import gmpy2

#返回n的素因子列表
def prime_factor_list(n):
    list = []
    for i in range(2,int(math.sqrt(n))+2):
        if n % i == 0 and gmpy2.is_prime(i):
            list.append(i)
    return list

#判定a是否模p的原根(源于课本第7章第4节),其正确性可以用因式分解简单证明
def if_generator(a,p):
    flist = prime_factor_list(p-1)
    for i in flist:
        t = pow(a,(p-1)//i,p)
        if t == 1:
            return False
    return True

#寻找模p的最小生成元
def find_min_generator(p):
    for i in range(1, p):
        if if_generator(i, p) == True:
            return i
        
#给定n,以列表形式返回2~n的全部素数的最小生成元
def min_generator_list(n):
    prime = []
    list = []
    for i in range(2, n):
        if gmpy2.is_prime(i):
            prime.append(i)
            list.append(find_min_generator(i))
    return prime, list          

#求上述最小生成元集合中最大者所对应的素数p
def fun(n):
    #n=2时最小生成元集合为空,直接结束即可
    if n == 2:
        return.
    prime, flist = min_generator_list(n)
    m = max(flist)
    index = [i for i,j in enumerate(flist) if(j==m)]
    for i in index:
        print(prime[i])
  • 20
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值