654.最大二叉树
题目:给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:
- 二叉树的根是数组中的最大元素。
- 左子树是通过数组中最大值左边部分构造出的最大二叉树。
- 右子树是通过数组中最大值右边部分构造出的最大二叉树。
通过给定的数组构建最大二叉树,并且输出这个树的根节点。
分析:找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组,当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
return constructMaximumBinaryTree1(nums, 0, nums.length);
}
public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
if (rightIndex - leftIndex < 1) {
return null;
}
if (rightIndex - leftIndex == 1) {
return new TreeNode(nums[leftIndex]);
}
int maxIndex = leftIndex;
int maxVal = nums[maxIndex];
for (int i = leftIndex + 1; i < rightIndex; i++) {
if (nums[i] > maxVal){
maxVal = nums[i];
maxIndex = i;
}
}
TreeNode root = new TreeNode(maxVal);
root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
return root;
}
}
617.合并二叉树
题目:给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
分析:其中一颗树 == NULL 了,两个树合并就应该是另一颗树了,可卡因改变其中一棵树的值,让它与另一棵树对应位置的值相加,然后再返回这颗树。
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if (root1 == null) return root2;
if (root2 == null) return root1;
root1.val += root2.val;
root1.left = mergeTrees(root1.left,root2.left);
root1.right = mergeTrees(root1.right,root2.right);
return root1;
}
}
700.二叉搜索树中的搜索
题目:给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
分析:本体就是在二叉搜索树中寻找一个节点,从根节点开始,比较节点的值和目标值的大小,如果目标值小,就往左边找,反之右边。
class Solution {
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
if (val < root.val) {
return searchBST(root.left, val);
} else {
return searchBST(root.right, val);
}
}
}
98.验证二叉搜索树
题目:给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
分析:二叉搜索树中序遍历一定是有序的,所以可以通过判断中序遍历结果是不是有序的来判断是不是二叉搜索树。
class Solution {
TreeNode max;
public boolean isValidBST(TreeNode root) {
if (root == null) {
return true;
}
boolean left = isValidBST(root.left);
if (!left) {
return false;
}
if (max != null && root.val <= max.val) {
return false;
}
max = root;
boolean right = isValidBST(root.right);
return right;
}
}

4877

被折叠的 条评论
为什么被折叠?



