李沐动手学深度学习第四章-4.3多层感知机的简洁实现

这篇博客介绍了如何使用PyTorch的高级API简洁地实现多层感知机。模型包含一个隐藏层和一个输出层,隐藏层有256个单元并使用ReLU激活函数。训练过程与softmax回归类似,通过模块化设计使得代码易于复用。
摘要由CSDN通过智能技术生成

 首先在colab上面安装d2l 

!pip install d2l==0.14.  # installing d2l

导入需要的包: 

import torch
from torch import nn
from d2l import torch as d2l

1、 模型

通过高级API更简洁地实现多层感知机

 与softmax回归的简洁实现( 3.7节)相比, 唯一的区别是我们添加了2个全连接层(之前我们只添加了1个全连接层)。 第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。 第二层是输出层。

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

训练过程的实现与我们实现softmax回归时完全相同, 这种模块化设计使我们能够将与模型架构有关的内容独立出来。

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

 

2. 小结

  • 我们可以使用高级API更简洁地实现多层感知机。

  • 对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值