- 博客(26)
- 收藏
- 关注

原创 无向图求最短路径——Dijkstra(迪杰斯特拉算法)
无向图求最短路径——Dijkstra(迪杰斯特拉算法) Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。 问题描述: 如下无向图, 若从顶点1开始计算到其余各顶点的最短路径 首先需要3个辅助数组:dist[] : 记录从顶点1开始到其余各顶点的最短路径 visited[] : 记录该顶点是否被访问过, 初始值设为0 path[] : 记录该顶点最短路径的前驱顶点 求最短路径步骤: ①初始化数组:...
2020-10-28 14:48:11
13492
原创 机器学习性能指标
该篇内容主要总结如下博客链接【机器学习笔记】:一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC - 知乎[白话解析] 通过实例来梳理概念 :准确率 (Accuracy)、精准率(Precision)、召回率(Recall)和F值(F-Measure) - 罗西的思考 - 博客园1. 理解混淆矩阵混淆矩阵中有着Positive、Negative、True、False的概念,其意义如下: 预测类别为1的为Positive(阳性),预测类别为0的为Neg...
2022-05-14 20:08:27
479
原创 Pytorch 深度学习实践Lecture_12 Basic RNN
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_BilibiliRNN处理具有序列关系的输入数据, 如天气,股市,自然语言RNN Cell输入包括两部分: ①:t 时刻对应的数据 ② 上一时刻的隐藏单元RNN Cell输出当前时刻的隐藏单元值RNN Cell 计算过程RNN Cell 可以看作是一个线性层: 维度为input_size的向量: 维度为hidden_size的向量: (hidden_size, hidden_siz...
2022-05-07 23:41:52
558
原创 Pytorch 深度学习实践Lecture_11 Advanced CNN
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_BilibiliGoogLeNet如下图所示, 当层数过多时, 为了减少代码冗余即将设计中重复出现的层定义成一个类。GoogLeNet模型中将这样的模块称之为Inception Module.Inception Module如下图所示为Inception Module设计,最终这四条路径的输出,按照通道的顺序进行拼接,进而进行下一步。Inception Module 进一步解读参考如下博客:【...
2022-05-06 15:09:47
603
原创 Pytorch 深度学习实践Lecture_10 Basic CNN
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_Bilibili卷积神经网络上一节课的MNIST 手写数据集使用的是全连接层, 将1*28*28 image 展开成(1,784)的向量譬如,两个在image上的相邻点, 展开后两点距离变远,无法捕获到空间特征所以, 全连接层方式无法获取图像的空间特征。卷积层输入黑白图像:channel = 1彩色图像:channel =3卷积层的输入: Channel (通道数) * Weight (图像宽度) * Hei.
2022-05-03 15:58:29
959
原创 Pytorch 深度学习实践Lecture_9 Softmax Classifier
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_Bilibili使用Softmax预测多分类问题输出需要满足分布的条件1) 2) 假设 是最后一层的输出, Softmax 公式为示例损失函数(交叉熵)numpy 计算loss示例:import numpy as npy = np.array([1, 0, 0])z = np.array([0.2, 0.1, -0.1])y_pred = np.exp(z) / np.e...
2022-04-30 20:53:46
1137
原创 Pytorch 深度学习实践Lecture_8 Dataset and Dataloader
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_BilibiliDataSet类作用:1) 加载数据集2) 数据集索引from torch.utils.data import Dataset表示Dataset的抽象类所有其他数据集都应该进行子类化。所有子类应该override__len__和__getitem____len__提供了数据集的大小__getitem__支持整数索引,范围从0到len(self)DataLoader类作用:..
2022-04-28 20:18:37
171
原创 Pytorch 深度学习实践Lecture_7 Multiple Dimension Input
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_Bilibili多维输入如下图为糖尿病数据集, 输入为10个样本, 每个样本具有8维特征(怀孕次数,血糖,血压,皮脂厚度,胰岛素,BMI身体质量指数,糖尿病遗传函数,年龄),最后一列为标签(结果),0表示未患糖尿病,1表示患有糖尿病。逻辑回归模型由于输入数据维数增多, 而预测值是标量, 所以模型需要使用矩阵形式做计算说明:1. 乘的权重(w)都一样,加的偏置(b)一样。b变成矩阵时会使用python...
2022-04-27 22:53:47
1275
原创 Pytorch 深度学习实践Lecture_6 Logistic Regression
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_Bilibili线性回归线性模型 预测:连续实数值线性回归模型预测: 离散值(分类)仿射模型线性回归模型的仿射模型是在线性模型基础上添加了激活函数, 可以将预测值映射到(-1, 1)区间内。损失线性模型的MSE loss:线性回归模型BCE loss:PS:线性模型loss 计算的是一个数轴上两个实数值的距离;线性回归模型loss 计算的是分布的差异...
2022-04-24 16:14:43
1797
原创 Pytorch 深度学习实践Lecture_5 Linear Regression with Pytorch
1. 准备数据集2. 设计模型类3. 定义loss以及优化器4. 训练 forward -> backward -> update线性模型 import torchimport matplotlib.pyplot as pltclass LinearModel(torch.nn.Module): """ __init_ and forward function have to be implemented """ de..
2022-04-21 21:53:49
126
原创 Pytorch 深度学习实践Lecture_4 Back Propagation
反向传播可以通过链式法则,使得梯度在计算图中进行反向传播在Pytorch中, Tensor 对象包含data 和 grad 两个属性 data:用于存放tensor,是数据本体。 grad:存放data的梯度值(默认不计算梯度)在Pytorch中, Tensor之间的计算即为动态生成计算图(谨记)import torchimport matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4...
2022-04-20 21:22:41
667
原创 Pytorch 深度学习实践Lecture_3 Gradient Descent
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_Bilibili1. 梯度下降算法该算法中,损失值为梯度更新公式为 , 计算的是所有样本的损失和梯度下降有一个问题: 若遇到鞍点时, 则梯度无法更新2. 随机梯度下降算法为了解决上述问题, 采取随机梯度下降算法随机梯度下降算法中,梯度更新公式为, 计算的是某一个随机样本的损失由于单个样本带噪音, 所以在遇到鞍点时,梯度可以继续更新随机梯度下降算法也有一个问题:计算下一个梯度时,依赖上一次...
2022-04-20 17:20:11
789
原创 Pytorch 深度学习实践Lecture_2 Linear Model
up主 刘二大人视频链接刘二大人的个人空间_哔哩哔哩_Bilibili给的示例为模型y = wximport numpy as npimport matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]def forward(x): return x * wdef loss(x, y): y_pred = forward(x) return (y_pred ..
2022-04-20 15:05:48
698
翻译 如何在Colab上永久安装包
1. 注册google,登录Google Drive, 在My Drive 下新创建一个文件夹作为ipynb 根目录(文件名随意,后面步骤要用到), 然后Colab Notebooks新建文件夹放package(文件名随意, 后面步骤也需要用到2. Open Colab -> create ipynb① 挂载google drive以及添加sys pathimport os, sys # 挂载google drivefrom google.colab impo...
2021-12-09 15:51:47
8615
6
原创 张量算法基本性质
哈达玛积(Hadamard product): 两个矩阵按元素相乘 降维: 求张量元素和 张量为一维向量 ,如x= (tensor([0., 1., 2., 3.]), 则x.sum= tensor(6.)) 张量为二维向量, 如x= 非降维求和 点积 矩阵乘法 范数 L1范数 L2范数 弗罗贝尼乌斯范数 ...
2021-09-17 21:56:18
407
原创 CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/fastai/noarch/repodat
如图所示error:按以下步骤解决:1. cmd执行如下命令, 配置conda源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels h
2021-09-13 22:45:13
3911
原创 shell rsync 拷贝软链接指向文件
Rsync 是一种快速且极其通用的文件复制工具。以其 Delta 传输算法,通过仅发送源文件和目标中现有文件之间的差异来减少通过网络发送的数据量。rsync source_path destination_path其中, source_path是需要拷贝的路径/文件, destination_path是希望拷贝到的路径.一些比较常用的具体参数如下: 命令 解释 -z 传输时进行压缩提高效率 -v 显示rsync过程中详细信息。可以使用"-vvvv"获取更详细
2021-08-26 14:42:25
4271
转载 Redis设置开机自启
一、下载windows版本的Redis去官网找了很久,发现原来在官网上可以下载的windows版本的,现在官网以及没有下载地址,只能在github上下载,官网只提供linux版本的下载官网下载地址:http://redis.io/downloadgithub下载地址:https://github.com/MSOpenTech/redis/tags二、安装Redis1.这里下载的是Redis-x64...
2018-06-16 14:59:12
1329
原创 windows下配置flask虚拟环境
python2.7及python3.6均安装flask虚拟环境由于python2,python3都有pip所以将python2.7下python.exe改成python2.exe将Python3.6下python.exe改成python3.exe创建虚拟环境(如python2.7下安装)虚拟环境使用第三方使用工具virtualenv创建步骤1. 安装第三方使用工具virtualenv ...
2018-06-05 16:44:43
1183
原创 多任务——协程
协程使用yieldimport timedef work1(): while True: print("in work1") yield time.sleep(1)def work2(): while True: print("in work2") yield time.sle...
2018-04-28 11:11:20
260
原创 迭代器 & 生成器
可迭代对象获取迭代器中可迭代对象 迭代器 = iter(可迭代对象)通过迭代器获取下一个元素的值 下一个元素的值 = next(可迭代对象)实现可迭代对象 类中实现__iter__方法(提供迭代器)迭代器实现迭代器类中实现__next__方法:提供下一个元素的值类中实现__iter__方法:python官方规定迭代器也是一种可迭代对...
2018-04-27 22:18:51
134
原创 多任务——线程
线程线程概念在线程内部默认存在一个线程——主线程现代的操作系统都是以线程为调度的基本单位创建子线程创建Thread类的对象 import threading 对象名 = threading.Thread(target=**,(args,kwargs))创建线程类(该类对象一旦创建,将自动执行run方法) class mythread(threading.Thread): def run...
2018-04-26 16:50:32
158
原创 多任务——进程
进程进程&线程PID进程标识操作系统为管理多个进程,为每个进程编号os.getpid()——获取当前进程号os.getppid()——获取当前进程的父进程pid创建进程 import multiprocessing 进程名 = multiprocessing.Process(参数1,参数2,参数3)参数1: target = 函数名,标识进程运行的函数参数2: args (元组接收位...
2018-04-26 15:56:10
212
原创 Linux基本操作(下)
ln软链接 ln -s 文件名 链接名硬链接 ln 文件名 链接名 软链接 & 硬链接 软链接: ① 文件大小几乎不占用空间,源文件删除,则随之不存在 ② 可以创建目录软链接 ③ 支持跨分区 硬链接: ...
2018-04-26 15:07:59
152
原创 Linux基本操作(上)
ls -a 显示所有文件,包括隐藏文件 -l 以列表形式显示文件的详细信息 -m 以kb、Mb、Gb显示文件大小 -i 查看文件的iNode编号<该编号在文件系统唯一>touch touch 文件名——创建新文件通配符 *——匹配任意个任意字符 ?——匹配任意一个字符 [ ]——匹配集合中任意一个字符 [ - ]——匹配字符范围内任意一个字符路径pwd : 查看当前路...
2018-04-26 12:00:45
149
原创 Python装饰器
闭包闭包:两个函数嵌套,外层函数返回内层函数的引用,外层函数必须要带参 def 外部函数(参数): def 内部函数(): pass return 内部函数与函数之间的区别: 1.格式两个函数嵌套 2.闭包外部函数的参数可以在内存中保持装饰器装饰器是什么:闭包加@xxx 装饰器的作用:在不改变原先的函数值跟调用...
2018-04-21 12:15:50
330
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人