梯度的自动计算(自动微分)大大简化了深度学习算法的实现。 在自动微分之前,即使是对复杂模型的微小调整也需要手工重新计算复杂的导数, 学术论文也不得不分配大量页面来推导更新规则。
1. 前向传播
前向传播(forward propagation或forward pass) 指的是:按顺序(从输入层到输出层)计算和存储神经网络中每层的结果。
2.反向传播
反向传播(backward propagation或backpropagation)指的是计算神经网络参数梯度的方法。 简言之,该方法根据微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络。
反向传播的目的是计算梯度∂J/∂W(1)和 ∂J/∂W(2)。
3. 训练神经网络
在训练神经网络时,前向传播和反向传播相互依赖。 对于前向传播,我们沿着依赖的方向遍历计算图并计算其路径上的所有变量。 然后将这些用于反向传播,其中计算顺序与计算图的相反。
4. 小结
-
前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。
-
反向传播按相反的顺序(从输出层到输入层)计算和存储神经网络的中间变量和参数的梯度。
-
在训练深度学习模型时,前向传播和反向传播是相互依赖的。
-
训练比预测需要更多的内存。