简单dp,first wrong POJ 3616 Milking Time

博客讨论了一个农场挤奶问题的动态规划解决方案。给定N个挤奶时间,最多M次挤奶机会和每次休息时间t,需要找到最大挤奶量。博主分享了自己初次尝试失败的原因,并详细解释了题解中动态规划的状态转移过程,强调了排序和状态表示的重要性。最终给出了AC代码并输出了最大挤奶量。
摘要由CSDN通过智能技术生成

在一个农场里,在长度为N个时间可以挤奶,但只能挤M次,且每挤一次就要休息t分钟;

接下来给m组数据表示挤奶的时间与奶量求最大挤奶量


一个简单的动态规划,用一个dp表示在第i个时间段挤奶量的最大值,从i+1更新到M

自己没有做出来的原因:这道题如果收获都是1的话,其实就是贪心了,

然后对于这道dp,自己在表示“包含选了i个物品后的结束时间”的时候遇到了麻烦。。。就不会了

看这个题解,他是倒着过来的,这样就可以进行状态转移判断能不能选剩下的物品了,我应该学习。他的i个物品既是物品,又是时间段


//再来理解,需要知道这里的dp【i】表示的是  i到m 选了第i个物品的最大。

分析:感觉好像就是因为这个dp表示的是选了第i个物品的,这样的话对于经过时间排序后的物品,就能判断能不能选了否则无法看当前的时间段能不能选

  1. #include <cstdio>  
  2. #include <cstring>  
  3. #include <vector>  
  4. #include <iostream>  
  5. #include <algorithm>  
  6. #include <limits.h>  
  7. #include <cmath>  
  8. #include <queue>  
  9. using namespace std;  
  10. int dp[10050];  
  11. struct sa{  
  12.     int x,y,sum;  
  13. }p[10050];  
  14. int cmp(const sa a,const sa b){  
  15.     if(a.x==b.x)  
  16.     return a.y<b.y;  //他这个地方并不是像贪心一样只把截止时间排序,他却是先排序起始时间,但是我的那个贪心的也可以。他这个不知道为什么也可以ac
  17.     return a.x<b.x;  
  18. }  
  19. int main(){  
  20.     int n,m,t;  
  21.     scanf("%d%d%d",&n,&m,&t);  
  22.     for(int i=0;i<m;i++){  
  23.         scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].sum);  
  24.         p[i].y+=t;  
  25.     }  
  26.     sort(p,p+m,cmp);//这一步很关键,时间是有顺序的  

  27.     for(int i=m-1;i>=0;i--){  
  28.         dp[i]=p[i].sum;  
  29.         for(int j=i+1;j<m;j++)  
  30.         if(p[j].x>=p[i].y){  
  31.             dp[i]=max(dp[i],dp[j]+p[i].sum);//这里就是转移方程  ,,//我再敲的时候dp[j]+p[i].sum写的是dp[j]+p[j].sum,显然是没有好好地理解这个代码
  32.         }  
  33.     }  
  34.     int maxx=0;  
  35.     for(int i=0;i<m;i++)  
  36.     maxx=max(maxx,dp[i]);  
  37.     cout<<maxx<<endl;  
  38.     return 0;  
  39. }

自己再敲的
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<functional>
#include<iostream>
#include<queue>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
using namespace std;
const int maxn=1e6+5;

struct Node {
    int s,e,v;
}node[maxn];
bool cmp(Node a,Node b){
    //if(a.s==b.s)
    return a.e<=b.e;
    //return a.s<b.s;
}
int dp[maxn];
int main(){
    int n,m,r;
    scanf("%d%d%d",&n,&m,&r);
    int tol=0;
    for(int i=1;i<=m;++i){
        scanf("%d%d%d",&node[tol].s,&node[tol].e,&node[tol].v);
        node[tol++].e+=r;
    }
    sort(node,node+tol,cmp);
    memset(dp,0,sizeof(dp));
    for(int i=tol-1;i>=0;i--){
        dp[i]=node[i].v;
        for(int j=i+1;j<tol;++j){
            if(node[j].s>=node[i].e){
                dp[i]=max(dp[i],dp[j]+node[i].v);
            }
        }
    }
    int maxx=0;
    for(int i=0;i<m;++i){
        maxx=max(maxx,dp[i]);
    }
    cout<<maxx<<'\n';
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值