codeforces 577B B. Modulo Sum(背包+dp)

参考
http://blog.csdn.net/loveyou11111111/article/details/48595091

http://blog.csdn.net/qq_24451605/article/details/48625131
定义状态dp[i][j]代表利用前i个数是否能够得到对m取模得j。
转移的过程采取背包的方法,很水
但是直接做一定会超时,O(n⋅m)
利用鸽巢定理可以知道,当n>m时,有n个数便有n个前缀和,而n%m只有m-1个值,所以至少有两个余数相同的前缀和,那么便能够得到一个连续的子序列满足题设条件,所以n>m的情况特判,复杂度就会优化为O(m⋅m)

题目大意:

给出n个数,求是否存在一个子集,这个子集中的数的和能够整除m
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define MAX 1007

using namespace std;

int n,m;
int a[MAX*MAX];
int dp[MAX][MAX];

int main ( )
{
    scanf ( "%d%d" , &n , &m );
    for ( int i = 1 ; i <= n ; i++ )
        scanf ( "%d" , &a[i] );
    if ( n > m )
    {
        puts ("YES" );
        return 0;
    }
    memset ( dp , 0 , sizeof ( dp ) );
    dp[0][0] = 1;
    bool flag = false;
    for ( int i = 1 ; i <= n ; i++ )
        for ( int j = m-1; j >= 0; j-- )
        {
            int x = ((j-a[i])%m+m)%m;
            if ( dp[i-1][x] )
            {
                dp[i][j] = 1;
                if ( j == 0 ) 
                    flag = true;//flag是在这里变,因为表示至少有一个值选了
            }
            if ( dp[i-1][j] )  dp[i][j] = 1;
        }
    if ( flag ) puts ("YES");
    else puts ("NO"); 
}


    #include <bits/stdc++.h>  
    using namespace std;  
    int dp[1010][1010], a[100010], n, m;  
    int main()  
    {  
        scanf("%d%d",&n,&m);  
        for (int i = 1; i <= n; i ++) {  
            scanf("%d",&a[i]);  
            a[i] %= m;  
        }  
        if (n > m) {  
            printf("YES\n");  
            return 0;  
        }  
        for (int i = 0; i <= n; i ++)  
            dp[i][0] = true;  
        for (int i = 1; i <= n; i ++)  
            for (int j = 0; j <= m; j ++)  
                dp[i][j] = dp[i-1][j] || dp[i-1][(j + a[i]) % m];  
        printf("%s\n", dp[n][m] ? "YES" : "NO");  
       return 0;  
    }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值