参考
http://blog.csdn.net/loveyou11111111/article/details/48595091
和
http://blog.csdn.net/qq_24451605/article/details/48625131
定义状态dp[i][j]代表利用前i个数是否能够得到对m取模得j。
转移的过程采取背包的方法,很水
但是直接做一定会超时,O(n⋅m)
利用鸽巢定理可以知道,当n>m时,有n个数便有n个前缀和,而n%m只有m-1个值,所以至少有两个余数相同的前缀和,那么便能够得到一个连续的子序列满足题设条件,所以n>m的情况特判,复杂度就会优化为O(m⋅m)
题目大意:
给出n个数,求是否存在一个子集,这个子集中的数的和能够整除m
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define MAX 1007
using namespace std;
int n,m;
int a[MAX*MAX];
int dp[MAX][MAX];
int main ( )
{
scanf ( "%d%d" , &n , &m );
for ( int i = 1 ; i <= n ; i++ )
scanf ( "%d" , &a[i] );
if ( n > m )
{
puts ("YES" );
return 0;
}
memset ( dp , 0 , sizeof ( dp ) );
dp[0][0] = 1;
bool flag = false;
for ( int i = 1 ; i <= n ; i++ )
for ( int j = m-1; j >= 0; j-- )
{
int x = ((j-a[i])%m+m)%m;
if ( dp[i-1][x] )
{
dp[i][j] = 1;
if ( j == 0 )
flag = true;//flag是在这里变,因为表示至少有一个值选了
}
if ( dp[i-1][j] ) dp[i][j] = 1;
}
if ( flag ) puts ("YES");
else puts ("NO");
}
#include <bits/stdc++.h>
using namespace std;
int dp[1010][1010], a[100010], n, m;
int main()
{
scanf("%d%d",&n,&m);
for (int i = 1; i <= n; i ++) {
scanf("%d",&a[i]);
a[i] %= m;
}
if (n > m) {
printf("YES\n");
return 0;
}
for (int i = 0; i <= n; i ++)
dp[i][0] = true;
for (int i = 1; i <= n; i ++)
for (int j = 0; j <= m; j ++)
dp[i][j] = dp[i-1][j] || dp[i-1][(j + a[i]) % m];
printf("%s\n", dp[n][m] ? "YES" : "NO");
return 0;
}