编写强力黑白棋的历程

博主分享了编写强力黑白棋的历程,从二维棋盘到一维优化,再到模板估值的探索。经过多次改进,包括估值函数和搜索深度的提升,使程序棋力显著增强。然而,面对《伤心黑白棋3.1》的强大挑战,博主研究模板估值算法,尝试通过统计分析提高棋力,但首次尝试未能超越原有算法。目前正在进行第二次模板参数计算,希望改善未曾遇到的模板对棋力的影响。
摘要由CSDN通过智能技术生成
    我的决战黑白棋从开始编写到现在已经大约经历了1年的时间,其中有几次是重大改编,可以说整个数据结构完全重写了。
    决战黑白棋刚开始的时候使用的是二维数组棋盘,估值函数基于棋子位置价值加行动力、潜在行动力,搜索深度大约是中局6层+终局15层。棋力很不理想,如禁止它进行终局搜索,我自己可以不费太大精力取胜。可见其估值函数是很差的。
    其后的一次重大改写是将二维棋盘改成了一维棋盘,是速度提高了20%左右,但由于估值函数的问题,棋力并没有加强,直到我改写估值函数。
    其后的估值函数在相当长的一段时间内都是棋子位置价值+行动力+潜在行动力+稳定子。这个估值函数可以说是比较强的,加上对终局搜索的改写,终局搜索加入奇偶搜索后速度大大加快。这时的决战黑白棋可以中局搜索8、9层,终局可以达到18-20层。这样的棋力已经非常强了。人要取胜几乎是没有可能的,我下载了国内的十多个著名的黑白棋软件,只有《伤心黑白棋3.1》和shines的《黑白棋世界1.0》能够战胜我的决战黑白棋。其中《黑白棋世界1.0》和《决战黑白棋》的棋力相差无几,但《伤心黑白棋3.1》要强很多。
    很早就听说《伤心黑白棋3.1》是基于模板估值的,并且据说搜索深度最大达到了中局18层+终局20层,终局20层对我来说到没什么,但中局18层却是无法想象。想必一定采用了前期剪枝。但无论是前期剪枝还是模板估值我那时都还不懂,对于这个号称国内第一强的《伤心黑白棋3.1》一点办法都没有。
    于是开始研究模板估值的论文,期待着能够大幅度的提高棋力。关于模板估值的文档很少,中文的更是没有。只找到一篇,英文的,而且讲的也不是很详细。断断续续的看了很久也没能掌握到要领,一直也没能付诸实践。后来用了一套简单的模板
•Alpha-Beta剪枝(Alpha-Beta pruning) 对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。各种各样的这种算法用于所有的强力Othello程序。(同样用于其他棋类游戏,如国际象棋和跳棋)。为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。 •估值 这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。我将要叙述三种不同的估值函数范例。我相信,大多数的Othello程序都可以归结于此。 棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格子值要小。忽视对称的话,棋盘上有10个不同的位置,每个格子根据三种可能性赋值:黑棋、白棋和空。更有经验的逼近是在游戏的不同阶段对格子赋予不同的值。例如,角在开局阶段和中局开始阶段比终局阶段更重要。采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。 基于行动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。观察表明,许多人类玩者努力获得最大的行动力(可下棋的数目)和潜在行动力(临近对手棋子的空格,见技巧篇)。如果代码有效率的话,可以很快发现,它们提高棋力很多。 基于模版的估值 :正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大行动力和潜在行动力是全局特性,但是他们可以被切割成局部配置,再加在一起。棋子最少化也是如此。这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。 估值合并:一般程序的估值基于许多的参数,如行动力、潜在行动力、余裕手、边角判断、稳定子。但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值