# 引言
随着人工智能技术的快速发展,聊天机器人已经成为许多行业的关键工具。在各种模型中,Hugging Face提供的语言模型因其强大的性能和灵活性而备受关注。在本文中,我们将探讨如何使用LangChain中的ChatHuggingFace模型,并展示如何进行集成和使用。
# 主要内容
## 1. 访问与设置
### 创建Hugging Face账户和获取API密钥
要访问Hugging Face模型,您需要创建一个Hugging Face账户并生成一个API密钥。将此密钥存储为环境变量,以便在代码中使用:
```python
import getpass
import os
if not os.getenv("HUGGINGFACEHUB_API_TOKEN"):
os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass("Enter your token: ")
安装所需的包
安装LangChain与Hugging Face集成所需的Python包:
%pip install --upgrade --quiet langchain-huggingface text-generation transformers google-search-results numexpr langchainhub sentencepiece jinja2 bitsandbytes accelerate
2. 模型实例化
可以通过HuggingFaceEndpoint
或HuggingFacePipeline
实例化ChatHuggingFace模型。
使用HuggingFaceEndpoint
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
max_new_tokens=512,
d