利用AI模型生成结构化数据的最佳实践

引言

在当今数据驱动的世界中,能够从丰富的文本信息中提取结构化数据是具有高度价值的能力。无论是为了将数据插入数据库,还是与其他下游系统进行集成,从模型中获得符合特定模式的输出都非常实用。这篇文章将为您介绍如何利用模型返回结构化数据的方法,我们将涵盖一些策略以及具体的编码示例。

主要内容

1. 使用with_structured_output()方法

这是获取结构化输出的最简单和最可靠的方式。该方法已经在提供结构化输出原生API的模型中实现。它接收一个模式输入,该模式指定了所需输出属性的名称、类型和描述。可以使用TypedDict类、JSON模式或Pydantic类来定义模式。

Pydantic类

Pydantic类的优势在于生成的输出将被验证。如果缺少任何必需字段或者字段的类型错误,将会抛出错误。

from langchain_core.pydantic_v1 import BaseModel, Field
from typing import Optional

class Joke(BaseModel):
    setup: str = Field(description="The setup of the joke")
    punchline: str = Field(description="The punchline to the joke")
    rating: Optional[int] = Field(
        default=None, de
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值