静电场高斯定理的数学证明

静电场高斯定理的数学证明


描述

设在原点有一场源电荷 Q Q Q,任取一闭合曲面 S S S,设其包围的区域为 Ω \Omega Ω,求证:
∯ S E ⃗ ⋅ d S ⃗ = q ε 0 \oiint_S\vec E\cdot d\vec S=\frac q{\varepsilon_0} SE dS =ε0q


证明

(下面的 r 2 r^2 r2均为 x 2 + y 2 + z 2 x^2+y^2+z^2 x2+y2+z2)

首先,据
E ⃗ = 1 4 π ε 0 Q r 2 e ⃗ r = 1 4 π ε 0 Q r 2 cos ⁡ α i ⃗ + 1 4 π ε 0 Q r 2 cos ⁡ β j ⃗ + 1 4 π ε 0 Q r 2 cos ⁡ γ k ⃗ \begin{aligned} \vec E&=\frac1{4\pi\varepsilon_0}\frac{Q}{r^2}\vec e_r\\ &=\frac1{4\pi\varepsilon_0}\frac{Q}{r^2}\cos\alpha\vec i +\frac1{4\pi\varepsilon_0}\frac{Q}{r^2}\cos\beta\vec j +\frac1{4\pi\varepsilon_0}\frac{Q}{r^2}\cos\gamma\vec k \end{aligned} E =4πε01r2Qe r=4πε01r2Qcosαi +4πε01r2Qcosβj +4πε01r2Qcosγk
其中,
cos ⁡ α = x x 2 + y 2 + z 2 , cos ⁡ β = y x 2 + y 2 + z 2 , cos ⁡ γ = z x 2 + y 2 + z 2 \cos\alpha=\frac{x}{\sqrt{x^2+y^2+z^2}},\cos\beta=\frac{y}{\sqrt{x^2+y^2+z^2}},\cos\gamma=\frac{z}{\sqrt{x^2+y^2+z^2}} cosα=x2+y2+z2 x,cosβ=x2+y2+z2 y,cosγ=x2+y2+z2 z

∯ S E ⃗ ⋅ d S ⃗ = Q 4 π ε 0 ∯ S x d y d z + y d z d x + z d x d y r 3 \oiint_S\vec E\cdot d\vec S=\frac{Q}{4\pi\varepsilon_0}\oiint_S\frac{xdydz+ydzdx+zdxdy}{r^3} SE dS =4πε0Q Sr3xdydz+ydzdx+zdxdy
则设 P ( x , y , z ) = x / r 3 , Q ( x , y , z ) = y / r 3 , R ( x , y , z ) = z / r 3 P(x,y,z)=x/r^3,Q(x,y,z)=y/r^3,R(x,y,z)=z/r^3 P(x,y,z)=x/r3,Q(x,y,z)=y/r3,R(x,y,z)=z/r3
∂ P ∂ x = ( x 2 + y 2 + z 2 ) 3 / 2 − 3 x 2 ( x 2 + y 2 + z 2 ) 1 / 2 ( x 2 + y 2 + z 2 ) 3 = y 2 + z 2 − 2 x 2 r 5 \frac{\partial P}{\partial x}=\frac{(x^2+y^2+z^2)^{3/2}-3x^2(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3}=\frac{y^2+z^2-2x^2}{r^5} xP=(x2+y2+z2)3(x2+y2+z2)3/23x2(x2+y2+z2)1/2=r5y2+z22x2
同理,
∂ Q ∂ y = z 2 + x 2 − 2 y 2 r 5 ∂ R ∂ z = x 2 + y 2 − 2 z 2 r 5 \frac{\partial Q}{\partial y}=\frac{z^2+x^2-2y^2}{r^5}\\ \frac{\partial R}{\partial z}=\frac{x^2+y^2-2z^2}{r^5} yQ=r5z2+x22y2zR=r5x2+y22z2
容易看出,三者在 ( 0 , 0 , 0 ) (0,0,0) (0,0,0)处都没有偏导数,则若用积分高斯定理需采用“挖洞法”

取外侧面 Σ : x 2 + y 2 + z 2 = ε 2 , ε → 0 \varSigma:x^2+y^2+z^2=\varepsilon^2,\varepsilon\to0 Σ:x2+y2+z2=ε2,ε0,则据高斯定理,有
∯ S E ⃗ ⋅ d S ⃗ + ∯ Σ − E ⃗ ⋅ d S ⃗ = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z = 0 \oiint_S\vec E\cdot d\vec S+\oiint_{\varSigma^-}\vec E\cdot d\vec S =\iiint_\Omega(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dxdydz=0 SE dS + ΣE dS =Ω(xP+yQ+zR)dxdydz=0
由于在 Σ \varSigma Σ面上, E ⃗ \vec E E S ⃗ \vec S S 处处垂直
∯ S E ⃗ ⋅ d S ⃗ = ∯ Σ E ⃗ ⋅ d S ⃗ = ∯ Σ 1 4 π ε 0 Q ε 2 d S = 1 4 π ε 0 Q ε 2 ∯ Σ d S = 1 4 π ε 0 Q ε 2 ⋅ 4 π ε 2 = Q ε 0 \begin{aligned} \oiint_S\vec E\cdot d\vec S&=\oiint_\varSigma\vec E\cdot d\vec S\\ &=\oiint_\varSigma\frac{1}{4\pi\varepsilon_0}\frac{Q}{\varepsilon^2}dS\\ &=\frac{1}{4\pi\varepsilon_0}\frac{Q}{\varepsilon^2}\oiint_\varSigma dS\\ &=\frac{1}{4\pi\varepsilon_0}\frac{Q}{\varepsilon^2}\cdot4\pi\varepsilon^2\\ &=\frac{Q}{\varepsilon_0} \end{aligned} SE dS = ΣE dS = Σ4πε01ε2QdS=4πε01ε2Q ΣdS=4πε01ε2Q4πε2=ε0Q
得证!


补充

如果在闭合曲面有多个场源电荷又怎么分析呢?这时,我们就可以根据静电场的电场的叠加原理将其独立,再根据上面的证明过程可以证得.


其实可以看出电磁学的高斯定理可以直接由微积分中的高斯定理推出,所以才都叫高斯定理吧!

  • 34
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值