场位方程——静电场问题(静电场的高斯定律+法拉第传导定律) | 偏微分方程(四)

静电场

物理问题:真空中有电荷分布,密度为 ρ ( x , y , z ) \rho(x,y,z) ρ(x,y,z),引起的稳恒电场为 E ( x , y , z ) E(x,y,z) E(x,y,z)

物理定律:静电场的高斯定律、法拉第定律

数学建模:

在空间任取区域V,其边界面记为 ∂ V \partial V V.由静电场的高斯定律:通过任意封闭曲面的电通量等于该曲面包围体积内的电荷总量除以介电常数 ϵ 0 \epsilon_0 ϵ0,有
∫ ∂ V E ⋅ d s = 1 ϵ 0 ∫ V ρ ( x , y , z ) d V \int_{\partial V}\bold E·ds=\frac{1}{\epsilon_0}\int_V \rho(x,y,z)dV VEds=ϵ01Vρ(x,y,z)dV
根据高斯公式
∫ ∂ V E ⋅ d s = ∫ V ∇ ⋅ E d V \int_{\partial V}\bold E·ds=\int_V \nabla·\bold EdV VEds=VEdV
以及V的任意性,得
∇ ⋅ E = ρ ( x , y , z ) ϵ 0 (1) \nabla ·\bold E=\frac{\rho(x,y,z)}{\epsilon_0} \tag{1} E=ϵ0ρ(x,y,z)(1)
又在空间任取曲面 S S S,其边界线为L,由法拉第定律:静电场绕闭路的电动势为0,有
∫ L E ⋅ d l = 0 \int_L\bold E·d\bold l=0 LEdl=0
根据斯托克斯(stocks)公式
∫ L E ⋅ d l = ∫ S ∇ × E ⋅ d s \int_L\bold E·d\bold l=\int_S \nabla \times \bold E·d\bold s LEdl=S×Eds
以及S的任意性,得
∇ × E = θ \nabla \times \bold E=\bold \theta ×E=θ
即静电场E无旋,从而存在位函数 ψ ( x , y , z ) \psi(x,y,z) ψ(x,y,z),使
E = − ∇ ψ E=-\nabla \psi E=ψ
代入(1)式,即得Poisson方程
Δ ψ = − ρ ( x , y , z ) ϵ 0 (2) \Delta \psi =-\frac{\rho (x,y,z)}{\epsilon_0} \tag{2} Δψ=ϵ0ρ(x,y,z)(2)
也称Poisson方程(2)为场位方程。

特别注意,当空间无电荷分布,即 ρ ( x , y , z ) ≡ 0 \rho(x,y,z)\equiv 0 ρ(x,y,z)0时,静电场的电位 π ( x , y , z ) \pi(x,y,z) π(x,y,z)满足Laplace方程。当电荷分布与z无关,即 ρ = ρ ( x , y ) \rho=\rho(x,y) ρ=ρ(x,y)时,(2)式成为二维场位方程。

总结:

这里,根据物理定律先建立起积分方程,再利用场论公式得到微分方程。也可用微元分析法直接导出Poisson方程(2),或者对弦振动、热传导问题先建立积分方程,再得微分方程。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值