电场强度通量的高斯定理

阅读这篇前推荐优先阅读高数中的高斯公式
该篇参考《电动力学》郭硕洪第三版第一章第二节。
通过闭合曲面 S S S的电场强度 E ⃗ \vec{E} E 的通量定义为面积分:
∮ s E ⃗ ⋅ d S ⃗ (1) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S} \tag{1} sE dS (1)
由库仑定律可以推出 关于电场强度通量的高斯定理:
∮ s E ⃗ ⋅ d S ⃗ = Q ϵ 0 (2) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}=\frac{\textbf{Q}}{\epsilon_0} \tag{2} sE dS =ϵ0Q(2)
其中 Q = ∑ i Q i \textbf{Q}=\sum_i Q_i Q=iQi,表示闭合曲面 S S S所围成的区域内的所有电荷量。
因此进一步我们可以将等式 ( 2 ) \left(2\right) (2)写为:
∮ s E ⃗ ⋅ d S ⃗ = 1 ϵ 0 ∑ i Q i (3) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}=\frac{1}{\epsilon_0}\sum_i Q_i \tag{3} sE dS =ϵ01iQi(3)
不知道有没有小伙伴会和我有同样的疑问,为什么这个公式会被称为电场强度通量的高斯定理呢?接下来我们来说明一下这个问题。

因为等式 ( 2 ) \left(2\right) (2)推导时的右侧部分是通过体积分得到的,对应于数学上的高斯定理,就是将面积分与体积分联系起来的公式,因此这里我们说 ( 2 ) \left(2\right) (2)表示的时电磁场强度通量的高斯定理。

进一步,如果我们将等式 ( 3 ) \left(3\right) (3)的右侧电荷替换为积分形式,那么我们可以电场高斯定理的积分形式。
∮ s E ⃗ ⋅ d S ⃗ = 1 ϵ 0 ∭ v ρ d V (4) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}=\frac{1}{\epsilon_0}\iiint_v \rho \mathrm{d}V \tag{4} sE dS =ϵ01vρdV(4)
如果我们使用数学上的高斯定理,那么我们可以将等式 ( 4 ) \left(4\right) (4)的左侧替换为:
∮ s E ⃗ ⋅ d S ⃗ = ∭ v ∇ ⋅ E ⃗ d V (5) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}= \iiint_v \nabla \cdot \vec{E} \mathrm{d}V \tag{5} sE dS =vE dV(5)
结合等式 ( 4 ) \left(4\right) (4)与等式 ( 5 ) \left(5\right) (5),我们可以得到电场高斯定理的微分形式:
1 ϵ 0 ∭ v ρ d V = ∭ v ∇ ⋅ E ⃗ d V (6) \frac{1}{\epsilon_0}\iiint_v \rho \mathrm{d}V= \iiint_v \nabla \cdot \vec{E} \mathrm{d}V \tag{6} ϵ01vρdV=vE dV(6)
∇ ⋅ E ⃗ = ρ ϵ 0 (7) \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \tag{7} E =ϵ0ρ(7)
等式 ( 7 ) \left(7\right) (7)即为电场高斯定理的微分形式。

如果大家觉得有用,就请点个赞吧~

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值