An infinitely long railway has a train consisting of n cars, numbered from1 ton (the numbers of all the cars are distinct) and positioned in arbitrary order. David Blaine wants to sort the railway cars in the order of increasing numbers. In one move he can make one of the cars disappear from its place and teleport it either to the beginning of the train, or to the end of the train, at his desire. What is the minimum number of actions David Blaine needs to perform in order to sort the train?
The first line of the input contains integer n (1 ≤ n ≤ 100 000) — the number of cars in the train.
The second line contains n integers pi (1 ≤ pi ≤ n,pi ≠ pj ifi ≠ j) — the sequence of the numbers of the cars in the train.
Print a single integer — the minimum number of actions needed to sort the railway cars.
5 4 1 2 5 3
2
4 4 1 3 2
2
In the first sample you need first to teleport the 4-th car, and then the5-th car to the end of the train.
/*
思路:每当插入一个元素, 判断它的前一个元素是否出现过, 如果出现过, 它的second就在前一个元素的second基础上加一然后插到map里,
如果没有出现过, 就把当前输入的值直接插入到map里就好啦~\(≧▽≦)/~啦啦啦~
*/
#include <iostream>
#include <cstdio>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <utility>
#include <algorithm>
using namespace std;
map<int, int> m;
map<int, int> :: iterator it;
int main()
{
int n;
int a;
scanf("%d", &n);
for (int i=0; i<n; i++)
{
scanf("%d", &a);
if (m.find(a-1) != m.end())
{
m[a] = m[a-1]+1;
}
else
{
m[a] = 1;
}
}
int ans = 0;
for (it=m.begin(); it!=m.end(); it++)
{
ans = max(ans, it->second);
}
cout << n-ans << endl;
return 0;
}
这道题想了好久, 每次都差一点点, 恩, 就是那致命的一点点, 我还需要修炼啦, ╮(╯▽╰)╭~*