华科大发布多模态大模型Monkey:低成本扩大输入分辨率,部分性能超越GPT-4V

前言

近年来,基于Transformer架构的多模态大语言模型(MLLM)在视觉理解和多模态推理任务中展现了出色的潜力。但这些模型通常需要大量的训练资源,限制了它们在更广泛研究和应用领域的普及。一种直接的解决方案是使用更小规模的预训练视觉和语言模型,但这往往会导致性能大幅下降。

为了突破这一瓶颈,华中科技大学的研究团队提出了Monkey,这是一种创新的轻量级多模态大模型。Monkey不仅能够低成本地扩大输入分辨率,从而捕捉更细致的视觉细节,而且通过生成多层次的图像描述数据,进一步增强了模型在理解图像-文本关系方面的能力。值得一提的是,Monkey在多项基准测试上的表现不仅优于同等规模的其他MLLM,甚至在某些指标上还超越了规模更大的GPT-4V。

  • Huggingface模型下载:https://huggingface.co/echo840/Monkey

  • AI快站模型免费加速下载:https://aifasthub.com/models/echo840

Monkey的创新设计

Monkey的核心创新在于两个方面:

  • 扩大输入分辨率的高效方法:Monkey将输入图像划分为多个固定大小的局部patch,并为每个patch配备独立的视觉编码器,以解决大分辨率输入带来的计算负担。同时,Monkey还采用可训练的视觉重采样器,有效整合了局部和全局的视觉信息。这种设计不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值