BGE:智源研究院突破性中英文语义Embedding向量模型

引言

智源研究院发布了一款开源的中英文语义向量模型BGE(BAAI General Embedding),在中英文语义检索精度与整体语义表征能力方面全面超越了OpenAI、Meta等同类模型。BGE模型的发布,标志着语义向量模型(Embedding Model)在搜索、推荐、数据挖掘等领域的应用迈入了一个新的阶段。

图片

模型性能

BGE模型在中文语义向量综合表征能力评测C-MTEB中表现卓越。在检索精度方面,BGE中文模型(BGE-zh)约为OpenAI Text Embedding 002的1.4倍。

图片

此外,BGE英文模型(BGE-en)在英文评测基准MTEB中同样展现了出色的语义表征能力,总体指标与检索能力两个核心维度均超越了此前开源的所有同类模型。

图片

### BGE Embedding Model in Natural Language Processing #### Introduction to BGE Models In the field of natural language processing (NLP), text embeddings play a crucial role by converting textual information into dense vector representations that can be utilized for various downstream tasks such as classification, similarity measurement, and retrieval operations. The BGE models developed by Beijing Academy of Artificial Intelligence (BAAI) represent some of the most advanced open-source embedding solutions available today[^1]. These models are designed to provide high-quality sentence-level embeddings which capture semantic meanings effectively. #### Utilizing Hugging Face Platform with BGE Models To leverage these powerful tools within one's projects or research endeavors, integration through platforms like Hugging Face proves invaluable due to its extensive library support along with ease-of-use features tailored specifically towards deep learning applications involving NLP techniques. Below is an example demonstrating how users may employ pre-trained versions provided via this platform: ```python from transformers import AutoTokenizer, AutoModel import torch tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-base-en-v1.5") model = AutoModel.from_pretrained("BAAI/bge-base-en-v1.5") def get_embedding(text): inputs = tokenizer([text], return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state.mean(dim=1).detach().numpy() return last_hidden_states.flatten() example_sentence = "The quick brown fox jumps over lazy dogs." embedding_vector = get_embedding(example_sentence) print(f"Embedding Vector Shape: {embedding_vector.shape}") ``` This code snippet initializes both tokenization parameters alongside loading necessary components from specified checkpoints before defining a function responsible for generating corresponding vectors based upon input sentences passed thereto; finally applying said functionality against sample data points illustrates practical application scenarios whereupon developers might find utility when working closely around linguistic structures encoded numerically rather than lexically alone. #### Comparison Against Other Techniques When comparing performance metrics across different methodologies including those mentioned previously under references two and three respectively – namely GPT-3 versus alternative approaches concerning task-specific outcomes during categorizations processes [^2]; also noting advancements brought forth by SimCSE framework emphasizing simplicity yet effectiveness regarding contrastive training paradigms applied directly onto sequential patterns found inside corpora samples [^3]. --related questions-- 1. What specific advantages does utilizing BGE models offer compared to traditional word-based embeddings? 2. How do BGE models perform relative to other state-of-the-art methods on benchmark datasets? 3. Can you explain more about the architecture behind BGE models and what makes them unique? 4. Are there any particular use cases where BGE outperforms alternatives significantly enough to warrant preference selection? 5. Is it possible to fine-tune BGE models further using domain-specific texts? If so, could examples illustrating procedures involved please be shared?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值