使用Markdown写矩阵、表格和一些数学公式(实用


Markdown的语法与LaTeX的语法有诸多相似之处,本文使用 $$\begin{matrix}…\end{matrix}$$来写矩阵。

不带括号的矩阵

代码之后的tag实现了后标:

$$
  \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix} \tag{1}
$$

写出的效果如下:
(1) 1 2 3 4 5 6 7 8 9 \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \tag{1} 147258369(1)
还是喜欢整整齐齐呢!

括号{}的矩阵

$$
  \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix} \tag{1}
$$

实现的效果如下:
(2) { 1 2 3 4 5 6 7 8 9 } \left\{ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right\} \tag{2} 147258369(2)

括号[]的矩阵

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix}
  \right] \tag{3}
$$

实现的效果如下:
(3) [ 1 2 3 4 5 6 7 8 9 ] \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] \tag{3} 147258369(3)

不使用left和right关键词

$$
 \begin{bmatrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{bmatrix} \tag{4}
$$

效果:
(4) [ 1 2 3 4 5 6 7 8 9 ] \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \tag{4} 147258369(4)
而对于大括号而言:

$$
 \begin{Bmatrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{Bmatrix} \tag{5}
$$

得到效果:
(5) { 1 2 3 4 5 6 7 8 9 } \begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{5} 147258369(5)

带省略号的矩阵

数学公式中常见的省略号有两种,\ldots表示与文本底线对齐的省略号,\cdots表示与文本中线对齐的省略号。

$$
\left[
\begin{matrix}
 1      & 2      & \cdots & 4      \\
 7      & 6      & \cdots & 5      \\
 \vdots & \vdots & \ddots & \vdots \\
 8      & 9      & \cdots & 0      \\
\end{matrix}
\right]
$$

可以看到,对应的符号都是使用\cdots ⋯ 等表示的
(6) [ 1 2 ⋯ 4 7 6 ⋯ 5 ⋮ ⋮ ⋱ ⋮ 8 9 ⋯ 0 ] \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right]\tag{6} 178269450(6)

带参数的矩阵

这里笔者希望在矩阵中画出一条分割线,以强调最右侧一列的特殊性。
其中\begin{array}{cc|c}中的c表示居中对齐元素

$$ 
\left[
    \begin{array}{cc|c}
      1 & 2 & 3 \\
      4 & 5 & 6
    \end{array}
\right] \tag{7}
$$

效果如下:
(7) [ 1 2 3 4 5 6 ] \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} [142536](7)

单线矩阵

$$
\begin{vmatrix}
	1&2&3\\
	4&5&6\\
	7&8&9
\end{vmatrix}
 \tag{8}
$$

实现效果:
(8) ∣ 1 2 3 4 5 6 7 8 9 ∣ \begin{vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{vmatrix} \tag{8} 147258369(8)

双线矩阵

$$
\begin{Vmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{Vmatrix}
 \tag{9}
$$

实现效果:
(9) ∥ 1 2 3 4 5 6 7 8 9 ∥ \begin{Vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{Vmatrix} \tag{9} 147258369(9)

多元方程对齐

$$
\begin{cases} 
		a_{11}x_1&+&a_{12}x_2&+&\cdots&+a_{1n}x_n&=&b_1\\
		&&&&\vdots\\
		a_{n1}x_1&+&a_{n2}x_2&+&\cdots&+a_{nn}x_n&=&b_n&			
\end{cases}
$$

效果如下:
(10) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_1&+&a_{12}x_2&+&\cdots&+a_{1n}x_n&=&b_1\\ &&&&\vdots\\ a_{n1}x_1&+&a_{n2}x_2&+&\cdots&+a_{nn}x_n&=&b_n& \end{cases} \tag{10} a11x1an1x1++a12x2an2x2+++a1nxn+annxn==b1bn(10)

大括号右多行赋值

$$
\left\{\begin{array}{cc} 
		1, & x=f(Pa_{x})\\ 
		0, & other\ values 
\end{array}\right.
$$

实现效果:
(11) { 1 , x = f ( P a x ) 0 , o t h e r   v a l u e s \left\{\begin{array}{cc} 1, & x=f(Pa_{x})\\ 0, & other\ values \end{array}\right. \tag{11} {1,0,x=f(Pax)other values(11)

用 cases

$$
P(x|Pa_x)=\begin{cases} 
		1, & x=f(Pa_{x})\\ 
		0, & other\ values 
\end{cases}
$$

实现效果:
(12) P ( x ∣ P a x ) = { 1 , x = f ( P a x ) 0 , o t h e r   v a l u e s P(x|Pa_x)=\begin{cases} 1, & x=f(Pa_{x})\\ 0, & other\ values \end{cases} \tag{12} P(xPax)={1,0,x=f(Pax)other values(12)

表格

| 标题 | 标题 | 标题 |
|:-|:-:|-:|
|内容左对齐标题|内容居中对齐标题|内容右对齐标题|

实现效果:

标题标题标题
内容左对齐标题内容居中对齐标题内容右对齐标题

括号的其他用法

在这里插入图片描述

求和符号上下限位置

1、默认情况下:

默认行内公式$\sum_{k=1}^n{x_k}$的上下限标注在右侧: ∑ k = 1 n x k \sum_{k=1}^n{x_k} k=1nxk
默认行间公式$$\sum_{k=1}^n{x_k}$$上下限标注在上下: (13) ∑ k = 1 n x k \sum_{k=1}^n{x_k} \tag{13} k=1nxk(13)
2、可强制修改:
强制行内公式$\sum\limits_{k=1}^n{x_k}$的上下限标注在上下: ∑ k = 1 n x k \sum\limits_{k=1}^n{x_k} k=1nxk
强制行间公式$$\sum\nolimits_{k=1}^n{x_k}$$上下限标注在右侧: (14) ∑ k = 1 n x k \sum\nolimits_{k=1}^n{x_k \tag{14}} k=1nxk(14)

数学符号字体

斜体加粗 AA:$\boldsymbol{A}$
效果: A \boldsymbol{A} A

LATEX基本语法

实用LATEX

$ y_k=\varphi(u_k+v_k)$ 
$J\alpha(x) = \sum{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha}$
注意下面的写法:(右对齐)
$$ y_k=\varphi(u_k+v_k)$$

效果如下:
y k = φ ( u k + v k ) y_k=\varphi(u_k+v_k) yk=φ(uk+vk)
J α ( x ) = ∑ m = 0 ∞ ( − 1 ) m m ! Γ ( m + α + 1 ) ( x 2 ) 2 m + α J\alpha(x) = \sum{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} Jα(x)=m=0m!Γ(m+α+1)(1)m(2x)2m+α
注意下面的写法:(右对齐)
(16) y k = φ ( u k + v k ) y_k=\varphi(u_k+v_k) \tag{16} yk=φ(uk+vk)(16)

输入上下标

^表示上标, _表示下标。如果上下标的内容多于一个字符,要用{}把这些内容括起来当成一个整体。上下标是可以嵌套的,也可以同时使用。例如:

$x^{y^z}=(1+{\rm e}^x)^{-2xy^w}$
$f(x)=x_2^3+1$
如果要在左右两边都有上下标,可以用\sideset命令...

实现效果:
(17) x y z = ( 1 + e x ) − 2 x y w , f ( x ) = x 2 3 + 1 {x^{y^z}=(1+{\rm e}^x)^{-2xy^w} ,f(x)=x_2^3+1} \tag{17} xyz=(1+ex)2xyw,f(x)=x23+1(17)

微分方程

$$\frac{du}{dt} and \frac{d^2 u}{dx^2}$$

效果如下:
(18) d u d t a n d d 2 u d x 2 \frac{du}{dt} and \frac{d^2 u}{dx^2} \tag{18} dtduanddx2d2u(18)

偏微分方程

$$\frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}  + \frac{\partial^2 u}{\partial z^2}\right)$$

效果如下:
(19) ∂ u ∂ t = h 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) \tag{19} tu=h2(x22u+y22u+z22u)(19)

分数

$\frac{1}{3}$
$P(v)=\frac{1}{1+exp(-v/T)}$

效果如下:
(20) 1 3 , P ( v ) = 1 1 + e x p ( − v / T ) \frac{1}{3},P(v)=\frac{1}{1+exp(-v/T)} \tag{20} 31,P(v)=1+exp(v/T)1(20)

开n次方根

$$\sqrt{2},\sqrt[n]{3}$$

效果如下:
(21) 2 , 3 n \sqrt{2},\sqrt[n]{3} \tag{21} 2 ,n3 (21)

向量

$\vec{a} \cdot \vec{b}=0$

实现效果:
(22) a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b}=0 \tag{22} a b =0(22)

积分

$\int_0^1 x^2 {\rm d}x$

实现效果:
(23) ∫ 0 1 x 2 d x \int_0^1 x^2 {\rm d}x\tag{23} 01x2dx(23)

极限运算

$\lim_{n \rightarrow +\infty} \frac{1}{n(n+1)}$
$\frac{1}{\lim_{u \rightarrow \infty}}, \frac{1}{\lim\limits_{u \rightarrow \infty}}$

实现效果:
(24) lim ⁡ n → + ∞ 1 n ( n + 1 ) , 1 lim ⁡ u → ∞ , 1 lim ⁡ u → ∞ \lim_{n \rightarrow +\infty} \frac{1}{n(n+1)},\frac{1}{\lim_{u \rightarrow \infty}}, \frac{1}{\lim\limits_{u \rightarrow \infty}}\tag{24} n+limn(n+1)1,limu1,ulim1(24)

累加、累乘运算

$\sum_{i=0}^n \frac{1}{i^2}$
$\prod_{i=0}^n \frac{1}{i^2}$

实现效果:
(25) ∑ i = 0 n 1 i 2 , ∏ i = 0 n 1 i 2 \sum_{i=0}^n \frac{1}{i^2},\prod_{i=0}^n \frac{1}{i^2}\tag{25} i=0ni21,i=0ni21(25)

希腊字母

在这里插入图片描述

三角函数与逻辑数学字符

在这里插入图片描述

感谢你花时间看我的总结,我是nuoyanli,我是热衷于ACM和大数据的技术宅,谢谢大家!

  • 11
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuoyanli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值