2、C++编程知识全面解析

C++编程知识全面解析

1. C++编程基础与适用人群

C++编程适合想要了解其工作原理的人群,无论有无编程经验,它都能帮助学习者快速掌握日常编程所需的关键元素,简化复杂的应用开发流程。

2. C++的历史与发展

C++由Bjarne Stroustrup博士在20世纪80年代初于AT&T的贝尔实验室开发,最初被称为“带类的C”,旨在成为与现有C代码兼容的优雅面向对象编程语言。C语言于1989年由ANSI和ISO联合委员会标准化,随后C++也经历了七年的发展,于1998年2月成为标准语言。如今,C++凭借其灵活性、速度、可移植性和强大功能,正迅速取代C成为主流编程语言。

3. C++内存分配
  • 静态内存分配 :在程序编译时就确定了内存的分配。
  • 动态内存分配
    • :由操作系统自动管理,存储局部变量等。
    • 自由存储区(堆) :需要程序员手动管理,使用 new delete 操作符。
      • 使用 new 操作符 :用于分配内存,例如 int* ptr = new int;
      • 使用 delete 操作符
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值