数值分析复习笔记-第八章-特征值

Chapter8 矩阵特征值与特征向量的计算

7.1 前言

  1. 一般求法:
    • 先由 ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0求特征值 λ \lambda λ
    • 再有 ( A − λ E ) x = 0 (A-\lambda E)x=0 (AλE)x=0求特征向量 x x x
  2. 对阶数特别多的矩阵A难以求行列式,这个时候就需要数值解法来求矩阵的特征值
  3. 方法:
    • 乘幂法:求主特征值
    • 反幂法:求最小的特征值

7.2 乘幂法

7.2.1 特点

  1. 求主特征值和特征向量
  2. 假设,对实数矩阵A:
    • 其有n个线性无关的特征向量 x ( i ) , i = 1 , 2 , ⋯   , n x^{(i)},i=1,2,\cdots,n x(i),i=1,2,,n
    • A x ( i ) = λ i x ( i ) Ax^{(i)}=\lambda_{i}x^{(i)} Ax(i)=λix(i),其中 λ i \lambda_{i} λi是实特征值且满足 ∣ λ 1 ∣ > ∣ λ 2 ∣ ≥ ⋯ ≥ ∣ λ n ∣ > 0 |\lambda_{1}| > |\lambda_{2}| \geq \cdots \geq |\lambda_{n}| >0 λ1>λ2λn>0
  3. 优点:算法简单,易于实现,对于高阶稀疏矩阵较为合适
  4. 缺点:收敛速度依赖于 ∣ λ 2 λ 1 ∣ k |\frac{\lambda_2}{\lambda_1}|^k λ1λ2k,越小越快

7.2.2 原始乘幂法

  1. 基本步骤:
    • 任取非0列向量 v ( 0 ) v^{(0)} v(0)
    • v ( 1 ) = A v ( 0 ) → ⋯ → v ( k + 1 ) = A v ( k ) v^{(1)}=Av^{(0)} \rightarrow \cdots \rightarrow v^{(k+1)}=Av^{(k)} v(1)=Av(0)v(k+1)=Av(k)
    • v ( k + 1 ) = A v ( k ) ≈ λ 1 v ( k ) v^{(k+1)}=Av^{(k)}\approx\lambda_{1}v^{(k)} v(k+1)=Av(k)λ1v(k)
    • λ 1 ≈ v ( k + 1 ) v ( k ) \lambda_{1}\approx\frac{v^{(k+1)}}{v^{(k)}} λ1v(k)v(k+1)
  2. 证明:由归纳法,提出最大特征值 λ 1 \lambda_{1} λ1,其余项趋近于0

选定初始列向量 v ( 0 ) v^{(0)} v(0),由于特征向量线性无关
v ( 0 ) = ∑ i = 1 n α i x ( i ) = α 1 x ( 1 ) + α 2 x ( 2 ) + ⋯ + α n x ( n ) v^{(0)}= \sum_{i=1}^{n} \alpha_ix^{(i)}=\alpha_1x^{(1)}+\alpha_2x^{(2)}+\cdots+\alpha_nx^{(n)} v(0)=i=1nαix(i)=α1x(1)+α2x(2)++αnx(n)
通过迭代关系 v ( 1 ) = A v ( 0 ) v^{(1)}=Av^{(0)} v(1)=Av(0)和特征向量定义式 A x ( i ) = λ i x ( i ) Ax^{(i)}=\lambda_{i}x^{(i)} Ax(i)=λix(i)
v ( 1 ) = A v ( 0 ) = ∑ i = 1 n α i A x ( i ) = ∑ i = 1 n α i λ i x ( i ) v^{(1)}=Av^{(0)}=\sum_{i=1}^{n}\alpha_iAx^{(i)}=\sum_{i=1}^{n}\alpha_i \lambda_{i}x^{(i)} v(1)=Av(0)=i=1nαiAx(i)=i=1nαiλix(i)
由归纳法,提出最大特征值 ∣ λ 1 ∣ |\lambda_{1}| λ1
v ( k ) = A v ( k − 1 ) = λ 1 k ( α 1 x ( 1 ) + α 2 λ 2 k λ 1 k x ( 2 ) + ⋯ + α n λ n k λ 1 k x ( n ) ) v^{(k)}=Av^{(k-1)}=\lambda_1^k(\alpha_1x^{(1)}+\alpha_2 \frac{\lambda_2^k}{\lambda_1^k}x^{(2)}+\cdots+\alpha_n \frac{\lambda_n^k}{\lambda_1^k}x^{(n)}) v(k)=Av(k1)=λ1k(α1x(1)+α2λ1kλ2kx(2)++αnλ1kλnkx(n))
当k充分大时, ( λ i λ 1 ) k (\frac{\lambda_i}{\lambda_1})^k (λ1λi)k全部趋近于0
v ( k ) = λ 1 k α 1 x ( 1 ) v^{(k)}=\lambda_1^k\alpha_1x^{(1)} v(k)=λ1kα1x(1)
v ( k + 1 ) = λ 1 k + 1 α 1 x ( 1 ) = λ 1 v ( k ) v^{(k+1)}=\lambda_1^{k+1}\alpha_1x^{(1)}=\lambda_1v^{(k)} v(k+1)=λ1k+1α1x(1)=λ1v(k)

  1. 特点:主特征向量每迭代一次要乘以一个 λ \lambda λ
    • ∣ λ 1 ∣ > 1 |\lambda_1|>1 λ1>1,主特征向量上溢->数值特别大
    • ∣ λ 1 ∣ < 1 |\lambda_1|<1 λ1<1,主特征向量下溢->数值趋近于0
    • 因此,提出如下改进乘幂法

7.2.3 改进乘幂法

  1. 本质:为了解决乘幂法数值上溢or下溢问题
  2. 特殊操作:向量规范化
    • 将向量所有元素除以最大分量
    • u ( k ) = v ( k ) m a x [ v ( k ) ] u^{(k)}=\frac{v^{(k)}}{max[v^{(k)}]} u(k)=max[v(k)]v(k)
    • 例子:v=(3,4,-10);max_v=|-10|=10;u=(3/10,4/10,-1)
  3. 步骤
    • 任取非0列向量 v ( 0 ) v^{(0)} v(0),并计算规范向量 u ( 0 ) = v ( 0 ) m a x [ v ( 0 ) ] u^{(0)}=\frac{v^{(0)}}{max[v^{(0)}]} u(0)=max[v(0)]v(0)
    • 计算 v ( k + 1 ) = A u ( k ) v^{(k+1)}=Au^{(k)} v(k+1)=Au(k)
    • 直到 ∣ λ k + 1 − λ k ∣ < ε |\lambda_{k+1}-\lambda_k|<\varepsilon λk+1λk<ε
    • 输出 λ 1 = m a x [ ∣ v ( k + 1 ) ∣ ] \lambda_1=max[|v^{(k+1)}|] λ1=max[v(k+1)],特征向量 u ( k + 1 ) = u ( k ) u^{(k+1)}=u^{(k)} u(k+1)=u(k)
  4. 证明:主要证明u和v两个列向量的关系,最后可以得出 λ 1 = m a x [ ∣ v ( k + 1 ) ∣ ] \lambda_1=max[|v^{(k+1)}|] λ1=max[v(k+1)]的结论

由定义可得:
u ( 0 ) = α 1 x ( 1 ) + α 2 x ( 2 ) + ⋯ + α n x ( n ) m a x [ α 1 x ( 1 ) + α 2 x ( 2 ) + ⋯ + α n x ( n ) ] u^{(0)}=\frac{\alpha_1x^{(1)}+\alpha_2x^{(2)}+\cdots+\alpha_nx^{(n)}}{max[\alpha_1x^{(1)}+\alpha_2x^{(2)}+\cdots+\alpha_nx^{(n)}]} u(0)=max[α1x(1)+α2x(2)++αnx(n)]α1x(1)+α2x(2)++αnx(n)
推导为k次迭代时:
u ( k ) = α 1 λ 1 k x ( 1 ) + α 2 λ 2 k x ( 2 ) + ⋯ + α n λ n k x ( n ) m a x [ α 1 λ 1 k x ( 1 ) + α 2 λ 2 k x ( 2 ) + ⋯ + α n λ n k x ( n ) ] u^{(k)}=\frac{\alpha_1 \lambda_1^k x^{(1)}+\alpha_2 \lambda_2^k x^{(2)}+\cdots+\alpha_n \lambda_n^k x^{(n)}}{max[\alpha_1 \lambda_1^k x^{(1)}+\alpha_2 \lambda_2^k x^{(2)}+\cdots+\alpha_n \lambda_n^k x^{(n)}]} u(k)=max[α1λ1kx(1)+α2λ2kx(2)++αnλnkx(n)]α1λ1kx(1)+α2λ2kx(2)++αnλnkx(n)
由归纳法,提出最大特征值 ∣ λ 1 ∣ |\lambda_{1}| λ1
u ( k ) = λ 1 k ( α 1 x ( 1 ) + α 2 λ 2 k λ 1 k x ( 2 ) + ⋯ + α n λ n k λ 1 k x ( n ) ) m a x [ λ 1 k ( α 1 x ( 1 ) + α 2 λ 2 k λ 1 k x ( 2 ) + ⋯ + α n λ n k λ 1 k x ( n ) ) ] = α 1 x ( 1 ) + α 2 λ 2 k λ 1 k x ( 2 ) + ⋯ + α n λ n k λ 1 k x ( n ) m a x [ α 1 x ( 1 ) + α 2 λ 2 k λ 1 k x ( 2 ) + ⋯ + α n λ n k λ 1 k x ( n ) ] u^{(k)}=\frac{\lambda_1^k(\alpha_1x^{(1)}+\alpha_2 \frac{\lambda_2^k}{\lambda_1^k}x^{(2)}+\cdots+\alpha_n \frac{\lambda_n^k}{\lambda_1^k}x^{(n)})}{max[\lambda_1^k(\alpha_1x^{(1)}+\alpha_2 \frac{\lambda_2^k}{\lambda_1^k}x^{(2)}+\cdots+\alpha_n \frac{\lambda_n^k}{\lambda_1^k}x^{(n)})]}=\frac{\alpha_1x^{(1)}+\alpha_2 \frac{\lambda_2^k}{\lambda_1^k}x^{(2)}+\cdots+\alpha_n \frac{\lambda_n^k}{\lambda_1^k}x^{(n)}}{max[\alpha_1x^{(1)}+\alpha_2 \frac{\lambda_2^k}{\lambda_1^k}x^{(2)}+\cdots+\alpha_n \frac{\lambda_n^k}{\lambda_1^k}x^{(n)}]} u(k)=max[λ1k(α1x(1)+α2λ1kλ2kx(2)++αnλ1kλnkx(n))]λ1k(α1x(1)+α2λ1kλ2kx(2)++αnλ1kλnkx(n))=max[α1x(1)+α2λ1kλ2kx(2)++αnλ1kλnkx(n)]α1x(1)+α2λ1kλ2kx(2)++αnλ1kλnkx(n)
当k充分大时, ( λ i λ 1 ) k (\frac{\lambda_i}{\lambda_1})^k (λ1λi)k全部趋近于0,u向量也全部收敛
u ( k ) = x ( 1 ) m a x [ x ( 1 ) ] → u ( k + 1 ) = u ( k ) u^{(k)}=\frac{x^{(1)}}{max[x^{(1)}]}\rightarrow u^{(k+1)}=u^{(k)} u(k)=max[x(1)]x(1)u(k+1)=u(k)
由迭代关系式 v ( k + 1 ) = A u ( k ) v^{(k+1)}=Au^{(k)} v(k+1)=Au(k)和特征向量定义式 A x ( i ) = λ i x ( i ) Ax^{(i)}=\lambda_{i}x^{(i)} Ax(i)=λix(i)
v ( k + 1 ) = A u ( k ) = A x ( 1 ) m a x [ x ( 1 ) ] = λ 1 x ( 1 ) m a x [ x ( 1 ) ] = λ 1 u ( k ) v^{(k+1)}=Au^{(k)}=\frac{Ax^{(1)}}{max[x^{(1)}]}=\frac{\lambda_1x^{(1)}}{max[x^{(1)}]}=\lambda_1u^{(k)} v(k+1)=Au(k)=max[x(1)]Ax(1)=max[x(1)]λ1x(1)=λ1u(k)
最终:
u ( k + 1 ) = v ( k + 1 ) m a x [ v ( k + 1 ) ] = λ 1 u ( k ) m a x [ v ( k + 1 ) ] u^{(k+1)}=\frac{v^{(k+1)}}{max[v^{(k+1)}]}=\frac{\lambda_1u^{(k)}}{max[v^{(k+1)}]} u(k+1)=max[v(k+1)]v(k+1)=max[v(k+1)]λ1u(k)
u ( k + 1 ) = u ( k ) u^{(k+1)}=u^{(k)} u(k+1)=u(k):
m a x [ v ( k + 1 ) ] = λ 1 max[v^{(k+1)}]=\lambda_1 max[v(k+1)]=λ1

  1. 一道例题:计算矩阵[3 -4 3;-4 6 3;3 3 1]的最大特征值和对应的特征向量
clc,clear all;
A=[3 -4 3;-4 6 3;3 3 1];
v0=[1 1 1]';
l0=max(abs(v0));
u0=v0./l0;

% calculate
l=l0;lold=inf;v=v0;u=u0;
while abs(l-lold) >1e-4
    lold=l;
    v=A*u;
    l=max(abs(v));
    u=v./l;
end
l,u

7.3 反幂法

7.3.1 特点

  1. 用于计算按模最小特征值及其对应特征向量的迭代方法
  2. 本质:原来是求A的最大特征值,现在是求A逆的最大特征值
  3. 特点:
    A x = λ x → A − 1 A x = I x = λ A − 1 x → A − 1 x = 1 λ x Ax=\lambda x \rightarrow A^{-1}Ax=Ix=\lambda A^{-1}x\rightarrow A^{-1}x=\frac{1}{\lambda}x Ax=λxA1Ax=Ix=λA1xA1x=λ1x

7.3.2 步骤

  1. 任取非0列向量 v ( 0 ) v^{(0)} v(0),并计算规范向量 u ( 0 ) = v ( 0 ) m a x [ v ( 0 ) ] u^{(0)}=\frac{v^{(0)}}{max[v^{(0)}]} u(0)=max[v(0)]v(0)
  2. 计算 A v ( k + 1 ) = u ( k ) Av^{(k+1)}=u^{(k)} Av(k+1)=u(k) 等价于 v ( k + 1 ) = A − 1 u ( k ) v^{(k+1)}=A^{-1}u^{(k)} v(k+1)=A1u(k)
  3. 直到 ∣ λ k + 1 − 1 − λ k − 1 ∣ < ε |\lambda_{k+1}^{-1}-\lambda_k^{-1}|<\varepsilon λk+11λk1<ε
  4. 输出 λ k + 1 − 1 = m a x [ ∣ v ( k + 1 ) ∣ ] − 1 \lambda_{k+1}^{-1}=max[|v^{(k+1)}|]^{-1} λk+11=max[v(k+1)]1,特征向量 u ( k + 1 ) = u ( k ) u^{(k+1)}=u^{(k)} u(k+1)=u(k)

7.3.3 带原点平移的反幂法

最后计算的特征值一定记得加p

  1. 本质:现在已知矩阵A有一个(粗略的、大概的、不真实的)特征值p,想求距离p最近的这个特征值
  2. 假设:
    • 数p是矩阵A的第i个特征值 λ i \lambda_i λi的近似
    • 满足 0 < ∣ λ i − p ∣ < ∣ λ j − p ∣ , j ≠ i 0<|\lambda_i -p|<|\lambda_j -p|, j\neq i 0<λip<λjp,j=i
  3. 通过平移,矩阵B=A-pI满足反幂法所要求的假设,特征值转换为 μ = λ j − p μ=\lambda_j -p μ=λjp,此时μ为最小的特征值,采用反幂法即可.
    ( A − p I ) x = A x − p x = λ x − p x = ( λ − p ) x (A-pI)x=Ax-px=\lambda x-px=(\lambda-p)x (ApI)x=Axpx=λxpx=(λp)x
  4. 步骤
    • 任取非0列向量 v ( 0 ) v^{(0)} v(0),并计算规范向量 u ( 0 ) = v ( 0 ) m a x [ v ( 0 ) ] u^{(0)}=\frac{v^{(0)}}{max[v^{(0)}]} u(0)=max[v(0)]v(0)
    • 计算 ( A − p I ) v ( k + 1 ) = u ( k ) (A-pI)v^{(k+1)}=u^{(k)} (ApI)v(k+1)=u(k)
    • 直到 ∣ λ k + 1 − 1 − λ k − 1 ∣ < ε |\lambda_{k+1}^{-1}-\lambda_k^{-1}|<\varepsilon λk+11λk1<ε
    • 输出 λ k + 1 − 1 + p \lambda_{k+1}^{-1}+p λk+11+p,特征向量 u ( k + 1 ) = u ( k ) u^{(k+1)}=u^{(k)} u(k+1)=u(k)
  5. 例题一道
clc,clear all;
A=[6 2 1; 2 3 1;1 1 1];
p=6;
A=A-p*eye(3);
v0=[1 1 1]';
l0=max(abs(v0));
u0=v0./l0;

% calculate
l=l0;lold=inf;v=v0;u=u0;
while abs(1/l-1/lold) >1e-4
    lold=l;
    v=A\u;
    l=max(abs(v));
    u=v./l;
end
1/l+p,u
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值