理解 numpy 中数组的索引访问

与python 普通的数组 (list) 一样。

numpy 中的ndarray 一样是支持 正向索引 和 负数索引

如图

在这里插入图片描述

如上图 array[1] 和 array[-8] 都是指向 同1个元素 8

python 代码例子:

arr_a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
assert arr_a[-1]==arr_a[8]==9
assert arr_a[2]==arr_a[-7]==3



一维数组的索引访问

这个很简单, 跟list 一样, 数组名字加上中括号, 然后里面写index

arr[x] # x is the index , 注意x可以是负数



二维数组的索引访问

二维数组开始有两种访问方法
1.
arr[x,y] 其中x 和 y 是从0 轴开始, 各个轴的index, 这个方法能直接返回该位置的元素

arr[x][y] 这个方法的return 跟 上面方法一样, 但是其实它是分了两个步骤, 其中arr[x] 是 n-1 维的某个切片, arr[x][y]就是该切片的 y index上的元素

等价于
arr_1 = arr[x]
arr[x,y] = arr_1[y] = arr[x][y]

代码例子:

arr_b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

# below 2 different ways to access the element of the multi-dimension ndarray
# details: https://numpy.org/doc/stable/reference/arrays.indexing.html
assert arr_b[1,2] == 6
assert arr_b[1][2] == 6
assert arr_b[1,2] == arr_b[1][2]

logger.info(f"arr_b[1]: {arr_b[1]}") # [4 5 6]
logger.info(f"arr_b[1, 2]: {arr_b[1, 2]}") # 6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nvd11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值