与python 普通的数组 (list) 一样。
numpy 中的ndarray 一样是支持 正向索引 和 负数索引
如图
如上图 array[1] 和 array[-8] 都是指向 同1个元素 8
python 代码例子:
arr_a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
assert arr_a[-1]==arr_a[8]==9
assert arr_a[2]==arr_a[-7]==3
一维数组的索引访问
这个很简单, 跟list 一样, 数组名字加上中括号, 然后里面写index
arr[x] # x is the index , 注意x可以是负数
二维数组的索引访问
二维数组开始有两种访问方法
1.
arr[x,y] 其中x 和 y 是从0 轴开始, 各个轴的index, 这个方法能直接返回该位置的元素
arr[x][y] 这个方法的return 跟 上面方法一样, 但是其实它是分了两个步骤, 其中arr[x] 是 n-1 维的某个切片, arr[x][y]就是该切片的 y index上的元素
等价于
arr_1 = arr[x]
arr[x,y] = arr_1[y] = arr[x][y]
代码例子:
arr_b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# below 2 different ways to access the element of the multi-dimension ndarray
# details: https://numpy.org/doc/stable/reference/arrays.indexing.html
assert arr_b[1,2] == 6
assert arr_b[1][2] == 6
assert arr_b[1,2] == arr_b[1][2]
logger.info(f"arr_b[1]: {arr_b[1]}") # [4 5 6]
logger.info(f"arr_b[1, 2]: {arr_b[1, 2]}") # 6