继续畅通工程
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18384 Accepted Submission(s): 7956
Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。
当N为0时输入结束。
当N为0时输入结束。
Output
每个测试用例的输出占一行,输出全省畅通需要的最低成本。
Sample Input
3 1 2 1 0 1 3 2 0 2 3 4 0 3 1 2 1 0 1 3 2 0 2 3 4 1 3 1 2 1 0 1 3 2 1 2 3 4 1 0
Sample Output
3 1 0
最小生成树,lruskal,在处理已经建好的路时,可以直接加到树上,或者把权值变为0!
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int per[500],n;
struct node{
int x,y,dis;
}s[100000];
void init()
{
for(int i=0;i<=n;i++)
per[i]=i;
}
int find(int x)
{
int t=x;
while(t!=per[t])
t=per[t];
return t;
}
bool join(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
per[fx]=fy;
return true;
}
return false;
}
bool cmp(node x,node y)
{
return x.dis<y.dis;
}
int main()
{
int i,j;
while(scanf("%d",&n),n)
{
int t=0,flag,dis;
init();
for(i=0;i<n*(n-1)/2;i++)
{
scanf("%d%d%d%d",&s[t].x,&s[t].y,&dis,&flag);
if(!flag)
s[t++].dis=dis;
else
//s[t++].dis=0;//两种写法
join(s[t].x,s[t].y);
}
sort(s,s+t,cmp);
int sum=0;
for(i=0;i<t;i++)
{
if(join(s[i].x,s[i].y))
sum+=s[i].dis;
}
printf("%d\n",sum);
}
return 0;
}
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int map[110][110],low[110];
void prim(int n)
{
int mi,mark,i,j,sum=0;
for(i=1;i<=n;i++)
low[i]=map[1][i];
for(i=2;i<=n;i++)
{
mi=INF;
for(j=1;j<=n;j++)
{
if(low[j]<mi&&low[j]!=-1)
{
mi=low[j];
mark=j;
}
}
if(mi==INF)
break;
low[mark]=-1;
sum+=mi;
for(j=2;j<=n;j++)
low[j]=min(low[j],map[mark][j]);
}
printf("%d\n",sum);
}
int main()
{
int i,a,b,c,d,m,n;
while(scanf("%d",&n),n)
{
m=n*(n-1)/2;
memset(map,INF,sizeof(map));
for(i=0;i<m;i++)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
if(d==0)
map[a][b]=map[b][a]=c;
else
map[a][b]=map[b][a]=0;
}
prim(n);
}
return 0;
}