poj2506-Tiling(规律,大数)

9 篇文章 0 订阅
6 篇文章 0 订阅
Tiling
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8300 Accepted: 4002

Description

In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? 
Here is a sample tiling of a 2x17 rectangle. 

Input

Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.

Output

For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle. 

Sample Input

2
8
12
100
200

Sample Output

3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251

这题主要是找寻规律,剩下的就是大数了!

我们假设要找2*n的种数:

2*(n-1)的已经拼好了,2*(n-2)也已经拼好了

我们可以知道,第n块只与n-1和n-1块有关系

第n-1块变成第n块只有一种方法

第n-2块变成第n块有三种方法,但是有一种和上边的那一种重复了

所以an=2*a(n-2)+a(n-1);



找出规律后代码也是可以优化的


未优化的 47ms:


#include<cstdio>
#include<cstring>
using namespace std;
struct node
{
	int a[10000];
}s[300];
int main()
{
	int c,n,i,j;
	s[0].a[0]=1;
	s[1].a[0]=1;
	for(i=2;i<260;i++)
	{
		c=0;
		for(j=0;j<10000;j++)
		{
			s[i].a[j]=s[i-1].a[j]+2*s[i-2].a[j]+c;
			c=s[i].a[j]/10;
			s[i].a[j]%=10;
		}
	}
	while(scanf("%d",&n)!=EOF)
	{
		for(i=10000-1;s[n].a[i]==0;i--);
		for(j=i;j>=0;j--)
		printf("%d",s[n].a[j]);
		printf("\n");
	}
return 0;
}

稍加优化  16ms:


#include<cstdio>
#include<cstring>
using namespace std;
struct node
{
	int a[10000];
}s[300];
int main()
{
	int c,n,i,j,cot=1;
	s[0].a[0]=1;
	s[1].a[0]=1;
	for(i=2;i<260;i++)
	{
		c=0;
		for(j=0;j<cot;j++)
		{
			s[i].a[j]=s[i-1].a[j]+2*s[i-2].a[j]+c;
			c=s[i].a[j]/10;
			s[i].a[j]%=10;
		}
		while(c)
		{
			s[i].a[cot++]=c%10;
			c/=10;
		}
	}
	while(scanf("%d",&n)!=EOF)
	{
//		for(i=10000-1;s[n].a[i]==0;i--);
//		for(j=i;j>=0;j--)
//		printf("%d",s[n].a[j]);
//		printf("\n");
	for(i=cot-1;s[n].a[i]==0;i--);
	for(;i>=0;i--)
	printf("%d",s[n].a[i]);
	printf("\n");
	}
return 0;
}

优化后   0ms



#include<cstdio>
#include<cstring>
using namespace std;
struct node
{
	int a[10000];
}s[300];
int main()
{
	int c,n,i,j,cot=1;
	long long temp;
	s[0].a[0]=1;
	s[1].a[0]=1;
	for(i=2;i<260;i++)
	{
		c=0;
		for(j=0;j<cot;j++)
		{
			temp=s[i-1].a[j]+2*s[i-2].a[j]+c;
			c=temp/100000;
			s[i].a[j]=temp%100000;
		}
		if(c>0)
		{
			s[i].a[cot++]=c;
		}
	}
	while(scanf("%d",&n)!=EOF)
	{
//		for(i=10000-1;s[n].a[i]==0;i--);
//		for(j=i;j>=0;j--)
//		printf("%d",s[n].a[j]);
//		printf("\n");
	for(i=cot-1;s[n].a[i]==0;i--);
	printf("%d",s[n].a[i]);
	for(i-=1;i>=0;i--)

	printf("%05d",s[n].a[i]);
	printf("\n");
	}
return 0;
} 



                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值