数据统计分析(1):数据分析流程

首先,数据分析能力是一项综合性的能力。

数据分析过程如下:

 

1.明确分析目的和思路

1.1 明确分析目的

做任何事情都有一个目标,数据分析也不例外。如果目的明确,所有问题都可以迎刃而解。所以在开展数据分析之前,要想清楚:为什么要开展数据分析?通过这次数据分析我要解决什么问题?只有明确数据分析的目标,数据分析才不会偏离方向,否则得出的数据分析结果不仅仅没有指导意义,甚至可能将决策者引入歧途,后果严重。下面引用了《谁说菜鸟不会数据分析》中的一张图来对比一下菜鸟和数据分析师之间的想法对比图,以及我们应该纠正的一些想法。

 

1.2 确定分析思路

当明确分析目的明确后,我们就要梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体展开数据分析,需要从那几个角度进行分析,采用哪些分析指标。

只有明确了分析目的,分析框架才能跟着确定下来,最后还要确保分析框架的体系化,使分析结果具有说服力。那数据分析体系化该如何理解?

体系化也就是逻辑化,简单来说就是先分析什么,后分析什么,使得各个分析点之间具有逻辑联系。这也是很多人常常感到困扰的问题,比如经常不知从哪个方面入手,分析的内容和指标常常被质疑是否合理,完整,而自己也说不出个所以然来,所以,体系化就是为了让你的分析框架具有说服力。

2.目标数据确定和采集

2.1 确定目标数据

确定目标数据是根据确定好的分析框架,进行确定需要收集哪些数据来达到分析目的,这是确保整个数据分析过程合理有效的首要条件,因为只有对目标数据进行分析才有可能得到分析者有用的分析结果。

2.2 目标数据采集

确定好目标数据以后,第二步就是依据确定的目标数据列表对目标数据进行有效采集。除了常用的全量数据开发和数据收集方法之外,当需要分析的数据量非常大时,还有可能会用到抽样数据采集方式,所以这里着重讲解一下数据抽样采集的分类。

抽样方法可以分成两大类:非概率抽样和概率抽样。非概率抽样常用语某些特定研究项目,而概率抽样才是更常用的抽样方式。

    1. 常用的非概率抽样方式

  • 方便抽样:抽样时,以方便为原则。例如,某影评人为收集观众对某部电影的评分情况,可以随机在电影院出口进行抽样采访。

  • 主观抽样:以采样者的主观经验关泽总体中具有代表性的样本。例如,研究榨菜销量下降的原因,采集农民工群体购买榨菜的情况。

  • 配额抽样:将总体按照某些因素进行分类或分层,然后在各层或各类中进行主观抽样配额抽样使样本在结构上与总体相似。例如,对某小学进行抽样,根据每个年级学生人数在总人数中的比例来确定每个年级需要抽样的人数。

  • 滚动抽样:根据上一个样本的信息来确定下一个样本。例如,小红被老师提问,小红回答错误后,推荐小丽回答。

    2. 常用的概率抽样方式

  • 简单随机抽样:从总体中随机抽取个案作为样本,每一个个案被抽中的概率都是相同的。

  • 等距抽样:将总体中的所有个案按照某个条件进行排序,然后随机确定开始位置,再按照事先确定的相等距离抽取下一个个案。

  • 分层抽样:将总体按照某些条件进行分层或分类,然后从每层或每类中随机抽取个案组成样本。配额抽样时分层抽样的一种特殊形式,只不过分层抽样没有要求每个层或类抽取的个案数量。

  • 整群抽样:将总体按照某些条件划分成不同的群体,然后随机抽取一个或几个群,并对抽取的群众个案进行数据采集。

 

3.数据处理

数据处理是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析前必不可少的阶段。数据处理主要包括:数据清洗,数据转化,数据提取,数据计算等处理方法。

4.数据分析

数据分析是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值信息,形成有效结论的过程。

数据分析方法的理论基础是统计学。

5.结果可视化及结果支持的决策

未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小狼躲藏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值