吴恩达视频观后感一(相同的字母表达的意思可是不一样)

我通过观看他的视频,揣摩他的思想,敲他布置的程序,反复测试和回味,发现了一些内容:

比如

其中的就是指的同一张图片的不同像素(eg:一张图片的所有像素有1w个,那么x下标一直从1到1w),每一个w都是一个单独的行向量(这个w除了维数固定,内部数据是自己优化调整的),w的转置和x可以满足矩阵乘法运算,w和x的乘积是一个实数(类型在程序中是array)。在两层神经网络(包含隐藏层)中,每一个神经节点都包含一个w和b,它们内部的数据都是根据自己学习得到的,每一个图片中所有的像素都会参与每一个神经节点的运算,即wT*x,

其中每一个z都是实数,上图中的内容是指的一张图片在多个神经节点(隐藏层)的作用下的计算过程,得到的是一个列向量。

而下图:

其中的每个小x均指的是一张图片,在单样本情况下,它就是一张图片,包含很多像素(x1、x2、x3...),这里面重点表达的如何计算多个图片(多样本)在两层神经网络下计算的过程。

注意不要被吴恩达视频中反复出现的相同字母所欺骗,有些不是一个东西(这里的x是图片,不是特征值(像素))。

这里面的,第一列从上到下就是一张图片(单样本)在多节点下的计算结果(如),第一行从左到右是多张图片(多样本)在同一个节点下的计算结果。整个矩阵就是多样本在同一层(多个节点)下计算的结果。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__0809 返回首页