神经网络——吴恩达视频结束

本文是作者学习吴恩达神经网络课程的心得,介绍了神经网络的基础知识,包括神经元的运算、激活函数(如ReLU)、成本函数、正向传播和反向传播(梯度下降)的概念。还讨论了深度学习中网络层数的影响,以及初始化权重的重要性。
摘要由CSDN通过智能技术生成

目前为止已经开学两个月余几天了,首先在这里感谢宿舍高同学让我想起找个平台记录自己所学!!大学四年转瞬即逝留下东西不多,因此读研之后更想留下痕迹,这里废话不多说心路历程补充到结尾,CSDN上面写东西应该会持续三年,以后应该会不定期更新,如果有哪位同志发其中有什么不妥之处也希望可以给予指正。然后这个东西也会留在博客园,以后有什么“人生感悟”主要是写到博客里面,体验一下。
      本次作为第一次文章,我还是想从基础开始,刚好重新学习了吴恩达老师的神经网络的课程,也算有点收获,就先记录一下:


首先呢,众所周知神经网络是由很多的神经元构成:

上图是一个含一个输入层,两个隐藏层,一个输出层的简单的神经网络。输入层顾名思义就是做输入用;隐藏层做计算,特征提取之用;输出层也是顾名思义。

这是一个神经网络的必走流程,分别是先过一个神经元的计算然后进入成本函数ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值