矩阵论——导数与梯度

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
方向导数梯度和海斯矩阵都是数学中与多元函数相关的概念。它们的定义和意义如下: 1. 方向导数:对于多元函数 $f(x_1, x_2, ..., x_n)$,在点 $P(x_1^0, x_2^0, ..., x_n^0)$ 处,沿着向量 $\boldsymbol{v}=(v_1, v_2, ..., v_n)$ 的方向上的导数称为该函数在点 $P$ 处沿着向量 $\boldsymbol{v}$ 的方向导数,记作 $\frac{\partial f}{\partial \boldsymbol{v}}(P)$。方向导数可以用梯度向量来表示,即 $\frac{\partial f}{\partial \boldsymbol{v}}(P)=\nabla f(P) \cdot \boldsymbol{v}$,其中 $\nabla f(P)$ 表示函数 $f$ 在点 $P$ 处的梯度向量。 2. 梯度:对于多元函数 $f(x_1, x_2, ..., x_n)$,在点 $P(x_1^0, x_2^0, ..., x_n^0)$ 处的梯度向量 $\nabla f(P)$ 定义为:$\nabla f(P)=\left(\frac{\partial f}{\partial x_1}(P), \frac{\partial f}{\partial x_2}(P), ..., \frac{\partial f}{\partial x_n}(P)\right)$。梯度向量的方向为函数在该点处增加最快的方向,大小为该方向上的方向导数的最大值。 3. 海斯矩阵:对于多元函数 $f(x_1, x_2, ..., x_n)$,在点 $P(x_1^0, x_2^0, ..., x_n^0)$ 处的海斯矩阵 $H(P)$ 定义为:$H(P)=\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(P) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(P) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(P) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(P) & \frac{\partial^2 f}{\partial x_2^2}(P) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(P) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(P) & \frac{\partial^2 f}{\partial x_n \partial x_2}(P) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(P) \end{pmatrix}$。海斯矩阵是一个 $n \times n$ 的矩阵,它描述了函数在该点处的二阶导数信息。当海斯矩阵是正定矩阵时,该点为函数的极小值点;当海斯矩阵是负定矩阵时,该点为函数的极大值点;当海斯矩阵有正有负的特征值时,该点为函数的鞍点。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿的探索之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值