【笔记】torch.nn.functional as F F.mse_loss():参数reduction、size_average、reduce

eg1:

eg2:

eg3:

 eg4:

以下是 `torch.nn.functional.mse_loss` 的代码实现: ```python def mse_loss(input, target, size_average=None, reduce=None, reduction='mean'): if not (target.size() == input.size()): warnings.warn("Using a target size ({}) that is different to the input size ({}). " "This will likely lead to incorrect results due to broadcasting. " "Please ensure they have the same size.".format(target.size(), input.size()), stacklevel=2) if size_average is not None or reduce is not None: reduction = _Reduction.legacy_get_string(size_average, reduce) if target.requires_grad: ret = (input - target) ** 2 if reduction != 'none': ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret) else: expanded_input, expanded_target = torch.broadcast_tensors(input, target) ret = torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) return ret ``` 该函数计算输入 `input` 和目标 `target` 之间的均方误差(MSE),返回值为标量张量。可选参数 `size_average` 和 `reduce` 被弃用,应使用 `reduction` 参数指定归约方式。参数说明如下: - `input`:输入张量。 - `target`:目标张量,与输入张量形状相同。 - `size_average`:已弃用。 - `reduce`:已弃用。 - `reduction`:指定用于计算输出张量的归约方式,可选值为 `'none'`、`'mean'` 和 `'sum'`,默认为 `'mean'`。 当 `target.requires_grad=True` 时,计算 `input` 与 `target` 之间的 MSE,并根据 `reduction` 的值进行归约;否则,将 `input` 和 `target` 扩展为相同的形状,再调用 C++ 实现的 `mse_loss` 计算 MSE,并根据 `reduction` 的值进行归约。需要注意的是,如果 `target` 与 `input` 形状不同,该函数会发出警告。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿的探索之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值