开了数论的坑,目标是无压力写出铜牌+水平的数论题,更大的锅扔给队友吧 (ಥ﹏ಥ)
本题要用到的欧拉函数:[http://www.cnblogs.com/linyujun/p/5194170.html]
题 意:主要是给定n,找出欧拉函数大于等于n的最小的数。要求常数或者log时间。
解:首先,按欧拉函数值从小到大为第一次序,原值为第二次序排序。由于φ(n)不一定随n增大而增大,也就是说,求m的最小目标值n ,(φ(n) = m) 可能不如大于m的数的目标值小。所以排好序之后选出每个m的最小目标值(暂时),然后把目标值数组从后往前更新,目标值 = min(当前目标值,大于m的数的目标值中最小的)。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
#include<cmath>
#include<stack>
#include<functional>
#include<sstream>
using namespace std;
typedef long long LL;
const int maxn = 1000010;
int n, k, c;
int phi[maxn];
void Euler(){
phi[1] = 1;
for (int i = 2; i < maxn; i++){
if (!phi[i]){
for (int j = i; j < maxn; j += i){
if (!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
struct node{
int id, eu;
node(int i = 0, int e = 0){
id = i; eu = e;
}
};
bool cmp(const node &n1, const node &n2){
if (n1.eu == n2.eu) return n1.id < n2.id;
return n1.eu < n2.eu;
}
node p[maxn];
int rk[maxn];
int a[10010];
int main(){
Euler();
phi[1] = 0;
for (int i = 1; i < maxn; i++){
p[i].id = i;
p[i].eu = phi[i];
rk[i] = 0x3fffffff;
}
sort(p + 1, p + maxn, cmp);
int cnt = -1;
for (int i = 1; i < maxn; i++){
if (p[i].eu > cnt){
cnt = p[i].eu;
rk[cnt] = p[i].id;
}
else continue;
}
for (int i = maxn-2; i >= 1; i--){
rk[i] = min(rk[i], rk[i + 1]);
}
int t; cin >> t;
int cas = 1;
while (t--){
int n; scanf("%d", &n);
LL ans = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
ans += rk[a[i]];
}
printf("Case %d: %lld Xukha\n", cas++,ans);
}
return 0;
}