NC20032 激光炸弹

这篇博客介绍了如何运用前缀和算法解决一个关于激光炸弹摧毁地图上目标的问题。激光炸弹的爆破范围必须与坐标轴平行,且不能摧毁位于边上的目标。通过建立二维数组并计算前缀和,可以找到最大价值的目标集合。代码示例展示了如何实现这个算法,并求得最大价值。
摘要由CSDN通过智能技术生成

题目链接

题目链接

题意

一种新型的激光炸弹,可以摧毁一个边长为R的正方形内的所有的目标。
现在地图上有n(N ≤ 10000)个目标,用整数Xi,Yi(其值在[0,5000])表示目标在地图上的位置,每个目标都有一个价值。
激光炸弹的投放是通过卫星定位的,但其有一个缺点,就是其爆破范围,即那个边长为R的正方形的边必须和x,y轴平行。
若目标位于爆破正方形的边上,该目标将不会被摧毁。

思路

  • 前缀和,sum[i][j]表示a[0-i][0-j]的和
  • 注意数组边界

参考代码

#include<bits/stdc++.h>
using namespace std;
int aa[6010][6010];
int sum[6010][6010];
int main()
{
    int n,r;
    cin>>n>>r;
    int x,y,k;
    int l=0,w=0;
    for(int i=0; i<n; i++)
    {
        cin>>x>>y>>k;
        l=max(l,x);
        w=max(w,y);
        aa[x+1][y+1]+=k;
    }
    sum[0][0]=aa[0][0];
    for(int i=1; i<=6000; i++)
    {
        sum[i][0]=sum[i-1][0]+aa[i][0];
    }
    for(int i=1; i<=6000; i++)
    {
        sum[0][i]=sum[0][i-1]+aa[0][i];
    }
    for(int i=0; i<=6000; i++)
    {
        for(int j=0; j<=6000; j++)
        {
            if(i>=1&&j>=1)
                sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+aa[i][j];
        }
    }
    int ans=-999999;
    for(int i=r; i<=6000; i++)
    {
        for(int j=r; j<=6000; j++)
        {
            ans=max(ans,sum[i-r][j-r]-sum[i][j-r]-sum[i-r][j]+sum[i][j]);
        }
    }
    cout<<ans<<endl;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值