论文笔记 EMNLP 2022|Retrieval-Augmented Generative Question Answering for Event Argument Extraction

1 简介

论文题目:Retrieval-Augmented Generative Question Answering for Event Argument Extraction
论文来源:EMNLP 2022
组织机构:The University of Texas at Dallas
论文链接:https://arxiv.org/pdf/2211.07067.pdf
代码链接:https://github.com/xinyadu/RGQA

1.1 动机

目前基于生成的事件抽取方法存在如下问题:

  • 输出模板格式密集(训练实例较少),无法充分利用约束模板的角色之间的语义关系。
  • 无法发挥大型预训练模型在相似输入输出对上产生抽取结果的类比能力。

1.2 创新

  • 提出了一个检索增强的生成问答模型,用于事件论元抽取。
  • 提出一个基于聚类的采样策略,用于few-shot场景(可比性更高)。

2 方法

在这里插入图片描述
模型的整体框架如上图,输入(图1)包括(Demonstration,Question,Input Context),其中Demonstration为(<Question, Context>, Arguments),从训练集中得到,使用S-BERT计算当前实例和Demonstration的相似性(图2),选择最相关的Demonstration。

模型生成的目标为下图1,loss为两个(图2),analogy loss为相似性设置一个阈值,判断Demonstration和实例中有非空的答案,另一个loss为生成loss。

Few-shot下的取样策略:使用k-means对输出上下文和触发词文本的编码进行聚类,对每个类簇取相应比例的样本,过程如下图:
在这里插入图片描述

3 实验

实验数据集为ACE 2005和WikiEvent,数据统计如下图:
在这里插入图片描述
Fully-Supervised下的实验结果如下图:
在这里插入图片描述
domain transfer下的实验结果如下图:
在这里插入图片描述
Few-shot下的实验结果如下图:
在这里插入图片描述
不同取样策略的事件类型分布和结果如下图:
在这里插入图片描述
在这里插入图片描述

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值