题目链接
题意
一共有 n个数,第 i 个数是 xi
xi 可以取 [li , ri] 中任意的一个值。
设 S =
∑
\sum
∑ xi 2 ,求 S 种类数。
思路
- 可以把每个数有多少种数值求出来,然后逐步求出答案,但是时间复杂度为100100100(S的范围) * 100(n个数)*100(li到ri)=1e10。。。
- 因此需要使用状态压缩,用一个01串表示,01串的第i为1则表示数字i可以出现,相加j则为左移j位,如0101表示0和2可以取到,加2得到010100,则2和4可以取到
- 由于每个数li到ri不只一个数,需要用或操作,达到去重的效果。
- 转移方程dp[i]|=(dp[i-1]<<(j*j))
参考代码
#include<bits/stdc++.h>
using namespace std;
int aa[110],bb[110];
bitset<100*100*100+10> dp[110];
int main()
{
int n;
cin>>n;
for(int i=1; i<=n; i++)
{
cin>>aa[i]>>bb[i];
}
dp[0][0]=1;
for(int i=1; i<=n; i++)
{
for(int j=aa[i]; j<=bb[i]; j++)
{
dp[i]|=(dp[i-1]<<(j*j));
}
}
cout<<dp[n].count()<<endl;
}