【深度学习】火灾检测软件系统

在这里插入图片描述
往期文章列表:

软件功能演示

火灾行为检测_202452315115

在这里插入图片描述

摘要:本文主要使用YOLOV8深度学习框架自训练了一个“火灾检测模型”,基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行火灾目标检测,本系统所涉及的训练数据及软件源码已打包上传,需要的朋友文章末尾结束语获取下载链接,免费,无套路!!

前言

  • 火焰检测算法可以应用于各类监控系统,如安防摄像头、红外热像仪等,实现对室内外火灾的实时监测。
  • 火焰检测算法可以与传感器技术相结合,对高危区域进行监控,如化工厂、仓库等,及早发现火情,提高火灾预警响应的速度和准确性。
  • 火焰检测算法可应用于智能消防系统中,通过与自动喷水、排烟等装置联动,实现对火灾的自动控制和扑救。
  • 与传统的火灾监测方法相比,火焰检测算法在应急管理中具有明显的优势。
    • 火焰检测算法能够实现对大范围区域的实时监测,减少了人力资源的投入,降低了火灾监测的成本。
    • 火焰检测算法基于图像处理技术,具有较高的准确性和稳定性,可以有效避免误报和漏报的情况。
    • 火焰检测算法的智能化特点,使其能够自动触发应急响应措施,提高了火灾应急管理的效率。

软件功能演示

图片检测演示

点击图片图标,选择需要检测的图片,即可得到检测结果。
[图片]

视频检测演示

点击视频图标,选择需要检测的视频,即可得到检测结果。
在这里插入图片描述

摄像头功能

系统还提供了摄像头实时监测功能。

模型训练

关于YOLOV8的数据标注及模型训练更详细的内容,可关注我的另一篇专门记录这部分的文章。
数据集准备及标注、训练参考:
3.3 训练结果评估
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
通常用损失函数下降的曲线来观察模型训练的情况,yolov8训练时主要包含三个方面的损失:定位损失、分类损失和动态特征损失,训练结束后,在runs/目录下找到训练过程及结果文件:
[图片]

  • 定位损失box_loss:预测框与标定框之间的误差GloU,越小定位越准确
  • 分类损失cls_loss:计算锚框与对应标定分类是否正确,越小分类越准确
  • 动态特征损失dfl_loss:一种用于回归预测框与目标框之间距离的损失函数,通过计算动态特征损失,可以更准确地调整预测框的位置,提高目标检测的准确性。
    本文训练结果如下:
    [图片]

PR曲线体现精确率和召回率的关系,mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示iou为正负样本的阈值,mAP@0.5表示阈值大于0.5的平均mAP,可以看到本文模型1类目标检测的mAP@0.5平均值为0.563。
[图片]

  1. 检测结果识别
    模型训练完成后,可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights/bset.pt,可以使用该文件进行推理检测:
    [图片]

结束语

由于本人能力有限,难免有疏漏之处。
文中源码文件【获取方式】:关注公众号:利哥AI实例探险
给公众号发送 “火灾检测” 获取下载方式,免费,无套路,关注即可!
给公众号发送 “火灾检测数据集” 获取数据集下载方式。
原文链接如下:
【深度学习】火灾检测软件系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

利哥AI实例探险

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值