2000 年数学一第七题——交错级数审敛另解

2000 年数学一第七题——交错级数审敛另解

2000 年考研数学一第七题涉及到一个幂级数在负端点处的审敛性判定,某些参考书上说该交错级数是不能使用莱布尼兹判别法判定的,在此勘误。

上述交错级数为 ∑ n = 1 ∞ ( − 3 ) n [ ( − 2 ) n + 3 n ] n \displaystyle\sum_{n=1}^\infty\dfrac{(-3)^n}{\left[(-2)^n + 3^n\right]n} n=1[(2)n+3n]n(3)n,答案做法是将其分解为两项收敛级数,从而判定原级数收敛。下面使用莱布尼兹判别法判定该级数收敛。设 a n = 3 n [ ( − 2 ) n + 3 n ] n a_n = \dfrac{3^n}{\left[(-2)^n + 3^n\right]n} an=[(2)n+3n]n3n,则 lim ⁡ n → ∞ a n = 0 \displaystyle\lim_{n\rightarrow\infty}a_n=0 nliman=0 不再赘述。接下来希望寻找 a n > a n + 1 a_n > a_{n+1} an>an+1 的等价条件,化简可得

3 n + 1 − ( − 2 ) n ( 5 n + 2 ) > 0 3^{n+1}-(-2)^n(5n+2) > 0 3n+1(2)n(5n+2)>0

k k k 是正整数,当 n = 2 k n = 2k n=2k 时该项等于 4 k ( 5 k − 2 ) + 3 2 k + 1 4^k(5k-2)+3^{2k+1} 4k(5k2)+32k+1,只要 k ≥ 3 k\geq3 k3 就有该项大于 0 0 0;当 n = 2 k − 1 n = 2k-1 n=2k1 时该项等于 2 2 k − 1 ( 10 k − 3 ) + 9 k > 0 2^{2k-1}(10k-3)+9^k > 0 22k1(10k3)+9k>0。综上,当 n ≥ 5 n\geq5 n5 时有 a n > a n + 1 a_n > a_{n+1} an>an+1,由莱布尼兹判别法,原交错级数收敛。


笔者猜测上述参考书的编者应是发现 a n a_n an 在前五项并非单调递减,因此误以为 a n a_n an 整体也非单调递减,从而做出了错误判断。实际上,此为级数的一大特点,即级数性质只需从某项开始成立即可,而无需考虑前任意有限项。该问题也是被老生常谈的了。在考场上,若考生无法想出标准答案的做法,而考虑使用莱布尼兹判别法时,就需要注意到该点,若因为前五项非单调递减就放弃莱布尼兹判别法,又想不出答案做法导致失分,就实属可惜。另外,在该题使用莱布尼兹判别法时,除上述要点外,还需要考生留意以下几点:

一是将 ∣ ( − 3 ) n [ ( − 2 ) n + 3 n ] n ∣ \left|\dfrac{(-3)^n}{\left[(-2)^n + 3^n\right]n}\right| [(2)n+3n]n(3)n 化简为 a n a_n an 时,可能会对 3 n + ( − 2 ) n 3^n+(-2)^n 3n+(2)n 是否恒正有疑虑,因为若该项不恒正,那么还要找出那些负项,与正项分类讨论,预计做起来就相当复杂了。但实际上若能看出 3 n + ( − 2 ) n ≥ 3 n − 2 n > 0 3^n+(-2)^n \geq 3^n-2^n > 0 3n+(2)n3n2n>0,该问题就迎刃而解。因为在级数中 n n n 为正整数,只要限定了奇偶就能将负号从底数中提出,显然若要该项小于 0 0 0 只能令交错项取负号,又由于交错项的底数绝对值较小,故没有 n n n 使该项小于 0 0 0。上述对 a n > a n + 1 a_n > a_{n+1} an>an+1 等价条件的证明也是使用了对 n n n 限定奇偶的方法。这是一种常用的方法。

二是将 a n > a n + 1 a_n > a_{n+1} an>an+1 化简为上述等价条件,对考生的代数计算能力有一定的要求,化简过程如下所示

3 n [ ( − 2 ) n + 3 n ] n > 3 n + 1 [ ( − 2 ) n + 1 + 3 n + 1 ] ( n + 1 ) \dfrac{3^n}{\left[(-2)^n+3^n\right]n} > \dfrac{3^{n+1}}{\left[(-2)^{n+1}+3^{n+1}\right](n+1)} [(2)n+3n]n3n>[(2)n+1+3n+1](n+1)3n+1

两侧同除 3 n 3^n 3n

1 [ ( − 2 ) n + 3 n ] n > 3 [ ( − 2 ) n + 1 + 3 n + 1 ] ( n + 1 ) \dfrac{1}{\left[(-2)^n+3^n\right]n} > \dfrac{3}{\left[(-2)^{n+1}+3^{n+1}\right](n+1)} [(2)n+3n]n1>[(2)n+1+3n+1](n+1)3

两侧分母均恒正,交叉相乘

[ ( − 2 ) n + 1 + 3 n + 1 ] ( n + 1 ) > 3 [ ( − 2 ) n + 3 n ] n \left[(-2)^{n+1}+3^{n+1}\right](n+1) > 3\left[(-2)^n+3^n\right]n [(2)n+1+3n+1](n+1)>3[(2)n+3n]n

对齐指数

[ 3 × 3 n − 2 ( − 2 ) n ] ( n + 1 ) > 3 [ ( − 2 ) n + 3 n ] n \left[3\times3^n-2(-2)^n\right](n+1) > 3\left[(-2)^n+3^n\right]n [3×3n2(2)n](n+1)>3[(2)n+3n]n

左侧展开

3 ( n + 1 ) 3 n − 2 ( n + 1 ) ( − 2 ) n > 3 [ ( − 2 ) n + 3 n ] n 3(n+1)3^n-2(n+1)(-2)^n > 3\left[(-2)^n+3^n\right]n 3(n+1)3n2(n+1)(2)n>3[(2)n+3n]n

右侧移到左侧并合并同类项

3 n + 1 − ( 5 n + 2 ) ( − 2 ) n > 0 3^{n+1}-(5n+2)(-2)^n > 0 3n+1(5n+2)(2)n>0

即为上述条件。

读者可发现若使用莱布尼兹判别法,整个流程下来,计算复杂度要远远大于答案方法,而答案方法相较于该方法,就需要考生能够想到将原级数分解为两个收敛级数之和,较为巧妙。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值