交错级数及其审敛法

U_{1}-U_{2}+U_{3}......U_{n} U_{i}\geq 0= \sum_{n \to 1}^{\infty }(-1)^{n-1}U_{n}, U_{n}\geq 0

称为交错级数

判断下列级数的敛散性

例 1   

\sum_{n \to 1}^{\infty }(-1)^{n+1}\frac{1}{\sqrt{n}}

 

解:U_{n}=\frac{1}{\sqrt{n}}>U_{n+1}=\frac{1}{\sqrt{n+1}},满足条件1。

\lim_{n \to \infty }U_{n}=\lim_{n \to \infty }\frac{1}{\sqrt{n}}=0满足条件2,所以 收敛。

例 2

\sum_{n \to 1}^{\infty }(-1)^{n}cos\frac{1}{n}

\frac{1}{n}=1,1/2,1/3.....<\pi /2

所以 cos\frac{1}{n}都在第一象限,一正一负,所以是交错级数

因为

 \lim_{n \to \infty }cos\frac{1}{n}=1

所以发散 

例3

\sum_{n \to 1}^{\infty }(-1)^{n}\frac{lnn}{n}

通过求导判断级数的单调性

 

{f}'(x)=\frac{lnx}{x}=\frac{1-lnx}{x^{2}}

当x>e时,单调递减

即当n\geq 3时,U_{n}\geq U_{N+1}   去掉有限项,改变有限项,增加有限项都不影响整个级数的敛散性

\lim_{n \to \infty }U_{n}=\lim_{n \to \infty }\frac{lnn}{n}=\frac{\infty }{\infty }

洛比达法则

\lim_{n \to \infty }\frac{\frac{1}{n}}{1}=0

所以收敛

例4

判断下列级数是绝对收敛还是条件收敛

\sum_{n \to 1}^{\infty }(-1)^{n+1}\frac{1}{lnn+1}

\sum_{n \to 1}^{\infty }|(-1)^{n+1}\frac{1}{lnn+1}|=\sum_{n \to 1}^{\infty }|\frac{1}{lnn+1}|

比较\frac{1}{lnn+1}  与 \frac{1}{n+1}大小。

即 lnn-n

f(x)=lnx-x 求导

{f}'(x)=\frac{1}{x}-1{f}'(x)<0

因为x\geq 1,所以

\frac{1}{lnn+1}大于\frac{1}{n+1}

因为

\sum_{n \to 1}^{\infty }\frac{1}{n+1}发散,所以\sum_{n \to 1}^{\infty }|\frac{1}{lnn+1}|发散

\sum_{n \to 1}^{\infty }(-1)^{n+1}\frac{1}{lnn+1}收敛,所以是条件收敛

例5

\gamma >0,   \sum_{n \to 1}^{\infty }a_{n}^{2} 收敛,则\sum_{n \to 1}^{\infty }(-1)^{n}\frac{|a_{n}|}{\sqrt{n^{2}+\gamma }}\leq \frac{1}{2}(a_{n}^{2}+\frac{1}{n^{2}+\gamma })

这里用到均值不等式ab\leq a^{2}+b{\color{Red} }^{2}

a_{n}^{2} 与\frac{1}{n^{2}+\gamma }均收敛,则\sum_{n \to 1}^{\infty }a_{n}^{2}收敛

 

 

 

 

 

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
莱布尼兹审敛是一种特殊的级数收敛性判别,主要用于测试交错级数的收敛性。交错级数是指级数的项交替正负,例如:$1-1/2+1/3-1/4+1/5-1/6+...$。接下来我将详细介绍莱布尼兹审敛的原理和使用方。 莱布尼兹审敛的原理是:对于一个交错级数,如果其交错项逐项减小并趋于零,则该级数收敛。这是因为在交错级数中,每一项的符号都不同,所以在相邻两项之间的差异中,负项可以抵消正项的部分和,从而减小级数的部分和。因此,如果差异逐项减小并收敛于零,那么级数的部分和也会逐渐减小并收敛于某个值。 根据莱布尼兹审敛的原理,我们可以得到如下的判别方:对于一个交错级数$\sum_{n=1}^{\infty}(-1)^{n-1}a_n$,如果满足以下条件,则该级数收敛: 1. $a_n$单调递减趋近于零; 2. $a_1>0$。 满足这两个条件后,我们可以使用莱布尼兹审敛进行级数的收敛性判断。具体方是:计算相邻两项之间的差异$|a_{n+1}| \leq |a_n|$,如果差异逐项递减并趋近于零,则级数收敛;如果差异没有逐项递减或不趋近于零,则级数发散。 需要注意的是,莱布尼兹审敛只适用于交错级数,对于其他类型的级数,需要使用其他的收敛性判别。此外,该方只能判断级数的收敛性,不能计算级数的精确值。如果需要计算级数的精确值,需要使用其他的求和方
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值