MLlib算法简介

http://blog.csdn.net/yangbutao/article/details/44977565

MLlib(Machine Learnig lib) 是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器。Spark的设计初衷就是为了支持一些迭代的Job, 这正好符合很多机器学习算法的特点。在Spark官方首页中展示了Logistic Regression算法在Spark和Hadoop中运行的性能比较,如图下图所示。

clip_image035\

可以看出在Logistic Regression的运算场景下,Spark比Hadoop快了100倍以上!

MLlib目前支持4种常见的机器学习问题: 分类、回归、聚类和协同过滤,


之前Mahout或者自己写的MR来解决复杂的机器学习,导致效率低,spark特别适合迭代式的计算,这正是机器学习算法训练所需要的,MLlib是基于spark之上算法组件,基于spark平台来实现。

主要的机器学习的算法目前在MLlib中都已经提供了,分类回归、聚类、关联规则、推荐、降维、优化、特征抽取筛选、用于特征预处理的数理统计方法、以及算法的评测。


以上是目前spark1.3支持的算法包,相比较之前的版本增加了新的算法,主题模型LDA,高斯混合模型GMM,FP-Growth关联规则等,当然还有其他一些算法性能方面的提升等等。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值