动态规划解最长递增子序列(O(n^2))

动态规划解最长递增子序列(O(n^2))

核心

  • 状态的定义:设dp[k]为到k项为止,最长递增子序列的长度;
  • 状态方程的定义:dp[k] = max(dp[k], dp[i] + 1) | i < k && arr[i] < arr[k],需遍历前面所有项

Code

//
//  main.cpp
//  LIS
//
//  Created by Morris on 2016/9/7.
//  Copyright © 2016年 Morris. All rights reserved.
//

#include <iostream> 
#include <vector> 

#define MAX(m, n) (m > n ? m : n)

namespace {
    using std::cin;
    using std::cout;
    using std::endl;
    using std::vector;
}

int main(int argc, const char *argv[])
{
    int i, j;
    int dp[7] = { 0 };
    int arr[6] = { 1, 7, 2, 8, 3, 4 };
    for (i = 0; i < 7; ++i) {
        dp[i] = 1;
    }

    for (i = 1; i < 6; ++i) {
        for (j = 0; j < i; ++j) {
            if (arr[j] < arr[i]) {
                dp[i] = MAX(dp[i], dp[j] + 1);
            }
        }
    }

    cout << dp[5] << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值