[HAOI2018] 染色 二项式反演

这篇博客介绍了如何运用二项式反演解决一个ACM竞赛中的染色问题,目标是计算所有可能染色方案中恰好出现特定次数颜色的愉悦度之和。通过分析题面,将'恰好出现S次'转化为'至少S次'或'至多S次',利用二项式反演公式推导出方案数,并用NTT优化算法实现O(N+nlogn)的复杂度。
摘要由CSDN通过智能技术生成

原题题面

为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 N N N 的序列, 每个位置都可以被染成 M M M 种颜色中的某一种.
然而小 C 只关心序列的 N N N 个位置中出现次数恰好为 S S S 的颜色种数, 如果恰 好出现了 S S S 次的颜色有 K K K 种, 则小 C 会产生 W k W_k Wk的愉悦度.
小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 1004535809 1004535809 1004535809 取模的结果是多少.

输入格式

从标准输入读入数据. 第一行三个整数 N ( 1 ≤ N ≤ 1 0 7 ) , M ( 1 ≤ M ≤ 1 0 5 ) , S ( 1 ≤ S ≤ 150 ) N(1\leq N \leq 10^7),M(1\leq M \leq 10^5),S(1\leq S \leq 150) N(1N107),M(1M105),S(1S150).
接下来一行 M + 1 M+1 M+1 个整数, 第 i i i 个数表示 W i − 1 W_{i-1} Wi1.

输出格式

输出到标准输出中. 输出一个整数表示答案.

输入样例

8 8 3
3999 8477 9694 8454 3308 8961 3018 2255 4910

输出样例

524070430

题面分析

注意到题面是是恰好出现S次,因此考虑利用二项式反演把问题将“恰好出现S次”转化为“至少S次”或者“至多S次”。
我们考虑至少S次
已知颜色出现种类的上限 l i m i t = m i n ( M , N S ) limit=min(M,\frac{N}{S}) limit=min(M,SN)
记恰好出现S次的颜色种类至少 i i i种的方案数为 f ( i ) f(i) f(i)
我们将 n n n分为 i + 1 i+1 i+1个位置,则方案数为
f ( i ) = C M i ∗ N ! ( S ! ) i ( N − i S ) ! ∗ ( M − i ) N − i S f(i)=C_{M}^{i}*\frac{N!}{(S!)^i(N-iS)!}*(M-i)^{N-iS} f(i)=CMi(S!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值