在日常工作中,经常需要使用随机算法。比如面对大量的数据, 需要从其中随机选取一些数据来做分析。 又如在得到某个分数后, 为了增加随机性, 需要在该分数的基础上, 添加一个扰动, 并使该扰动服从特定的概率分布。本文主要从这两个方面出发, 介绍一些算法, 供大家参考。
首先假设我们有一个使用的随机函数float frand(), 返回值在(0, 1)上均匀分布。大多数的程序语言库提供这样的函数。 在其他的语言如C/C++中, 可以通过间接方法得到。如 frand()= ((float)rand() ) / RAND_MAX;
1, 随机选取数据
假设我们有一个集合A(a_1,…,a_n), 对于数m,0≤m≤n, 如何从集合A中等概率地选取m个元素呢?
通过计算古典概率公式可以得到, 每个元素被选取的概率为m/n。 如果集合A里面的元素本来就具有随机性, 每个元素在各个位置上出现的概率相等, 并且只在A上选取一次数据,那么直接返回A的前面m个元素就可以了, 或者可以采取每隔k个元素取一个等类似的方法。这样的算法局限很大, 对集合A的要求很高, 因此下面介绍两种其他的算法。
1.1 假设集合A中的元素在各个位置上不具有随机性, 比如已经按某种方式排序了,那么我们可以遍历集合A中的每一个元素a_i, 0<=n 根据一定的概率选取ai。如何选择这个概率呢?
设m’为还需要从A中选取的元素个数, n’为元素a_i及其右边的元素个数, 也即n’=(n-i+1)。那么选取元素a_i的概率为 m’/n’。
由于该算法的证明比较繁琐, 这里就不再证明。
我们简单计算一下前面两个元素(2<=m<=n)各被选中的概率。
1) 设p(a_i=1)表示a_i被选中的概率。显而易见, p(a_1=1)=m/n, p(a_1=0)为(n-m)/n;
2)第二个元素被选中的概率为
p(a_2=1)= p(a_2=1,a_1=1)+p(a_2=1,a_1=0)
= p(a_1=1)*p(a_2=1│a_1=1)+ p(a_1=0)* p(a_2=1│a_1=0)
= m/n * (m-1)/(n-1) + (n-m)/n*m/(n-1)
= m/n
我们用c++语言, 实现了上述算法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
template
<
class
T>
bool
getRand(
const
vector<T> vecData,
int
m, vector<T>& vecRand)
{
int32_t nSize = vecData.size();
if
(nSize < m || m < 0)
return
false
;
vecRand.clear();
vecRand.reserve(m);
for
(int32_t i = 0, isize = nSize; i < isize ; i++){
float
fRand = frand();
if
(fRand <=(
float
)(m)/nSize){
vecRand.push_back(vecData[i]);
m--;
}
nSize --;
}
return
true
;
}
|
利用上述算法, 在m=4, n=10, 选取100w次的情况下, 统计了每个位置的数被选取的概率
位置 | 概率 |
1 | 0.399912 |
2 | 0.400493 |
3 | 0.401032 |
4 | 0.399447 |
5 | 0.399596 |
6 | 0.39975 |
7 | 0.4 |
8 | 0.399221 |
9 | 0.400353 |
10 | 0.400196 |
还有很多其他算法可以实现这个功能。比如对第i个数, 随机的从a_i, …, a_n中, 取一个数和a_i交换。这样就不单独介绍了。
1.2 在有些情况下,我们不能直接得到A的元素个数。比如我们需要从一个很大的数据文件中随机选取几条数据出来。在内存不充足的情况下,为了知道我们文件中数据的个数, 我们需要先遍历整个文件,然后再遍历一次文件利用上述的算法随机的选取m个元素。
又或者在类似hadoop的reduce方法中, 我们只能得到数据的迭代器。我们不能多次遍历集合, 只能将元素存放在内存中。 在这些情况下, 如果数据文件很大, 那么算法的速度会受到很大的影响, 而且对reduce机器的配置也有依赖。
这个时候,我们可以尝试一种只遍历一次集合的算法。
1) 取前m个元素放在集合A’中。
2) 对于第i个元素(i>m), 使i在 m/i的概率下, 等概率随机替换A’中的任意一个元素。直到遍历完集合。
3) 返回A’
下面证明在该算法中,每一个元素被选择的概率为m/n.
1) 当遍历到到m+1个元素时, 该元素被保存在A’中的概率为 m/(m+1), 前面m个元素被保存在A’中的概率为 1- (m/m+1 * 1/m) = m/m+1
2) 当遍历到第i个元素时,设前面i-1个元素被保存在A’中的概率为 m/(i-1)。根据算法, 第i个元素被保存在A’中的概率为m/i , 前面i-1各个元素留在A’中的概率为 m/(i-1) * (1-(m/i* 1/m) = m/i;
3) 通过归纳,即可得到每个元素留在A’中的概率为 m/n;
我们在类似 hadoop的reduce函数中, 用java实现该算法。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
public
void
reduce(TextPair key, Iterator value, OutputCollector collector,
int
m)
{
Text[] vecData =
new
Text[m];
int
nCurrentIndex =
0
;
while
(value.hasNext()){
Text tValue = value.next();
if
(nCurrentIndex < m){
vecData[nCurrentIndex] = tValue;
}
else
if
(frand() < (
float
)m / (nCurrentIndex+
1
)) {
int
nReplaceIndex = (
int
)(frand() * m);
vecData[nReplaceIndex] = tValue;
}
nCurrentIndex ++;
}
//collect data
…….
}
|
利用上述算法,在m=4, n=10, 经过100w次选取之后, 计算了每个位置被选择的选择的概率
位置 | 概率 |
1 | 0.400387 |
2 | 0.400161 |
3 | 0.399605 |
4 | 0.399716 |
5 | 0.400012 |
6 | 0.39985 |
7 | 0.399821 |
8 | 0.400871 |
9 | 0.400169 |
10 | 0.399408 |
2. 随机数的计算
在搜索排序中,有些时候我们需要给每个搜索文档的得分添加一个随机扰动, 并且让该扰动符合某种概率分布。假设我们有一个概率密度函数f(x), min<=x<=max, 并且有
那么可以利用f(x)和frand设计一个随机计算器r(frand()), 使得r(frand())返回的数据分布, 符合概率密度函数f(x)。
令
符合密度函数为f(x)的分布。
下面对这个以上的公式进行简单的证明:
由于g(x)是单调函数, 并且x在[0,1]上均匀分布,那么
由于上述公式太复杂, 计算运算量大, 在线上实时计算的时候通常采用线性差值的方法。
算法为:
1)在offline计算的时候, 设有数组double A[N+1];对于所有的i, 0<=i<=N, 令
2)在线上实时计算的时候,
令f = frand(),
lindex = (int) (f* N);
rindex = lindex +1;
那么线性插值的结果为 A[lindex]*(A[rindex]-f) + A[rindex] * (f – A[lindex])
我们做了一组实验,令f(x)服从标准正太分布N(0,1), N=10000, 并利用该算法取得了200*N个数。对这些数做了个简单的统计, 得到x轴上每个小区间的概率分布图。