自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 资源 (4)
  • 收藏
  • 关注

原创 LLM - windows下的Dify离线部署:从镜像打包到无网环境部署(亲测,包含插件部署)

LLM - windows下的Dify离线部署:从镜像打包到无网环境部署(亲测,包含插件部署)

2025-08-18 13:45:33 430

原创 windows下安装dify(无docker desktop版)(亲测)

6.运行启动dify(本地下载了dify工程[d/git_clone/dify-main/])配置代理,转发请求,可以在局域网其他电脑上通过局域网ip地址访问dify服务。下载并添加 Docker 的 GPG 密钥。报错解决方案:手动添加 Docker 官方存储库。3.ubuntu中 下载docker环境。安装 Docker 及其组件。4.下载docker-compose。7.windows系统安装nginx。创建 GPG 密钥目录。1.wsl 下载Ubuntu。2.wsl 启动Ubuntu。

2025-07-15 18:01:03 577

原创 YOLO模型初次训练体验(+实测)

本次训练旨在通过一个简单示例,使模型能够识别桌面上的图标。首先,使用截图软件在不同分辨率和背景条件下随机调整图标位置并截图保存,随后对图片进行批量重命名和分类整理,分为训练集和验证集。接着,使用LabelImg工具对图片进行标注,确保每张图片的图标位置和名称被准确记录。标注完成后,创建icon.yaml文件配置数据集路径,并编写train.py脚本调用YOLO模型进行训练。训练过程中需注意设置数据集目录,并调整训练参数如epochs和batch size。通过这一流程,模型将逐步学习并识别桌面图标。

2025-05-20 17:16:18 703

原创 YOLO模型使用jupyterlab的方式进行预测/推理(示例)

首先相信很多使用过python的人都或多或少地了解过这个应用。是一个开源Web应用程序,可让用户创建和共享包含实时代码、公式、可视化和叙述文本的文档。用途包括:数据清理和转换、数值模拟、统计建模、等等。而Jupyter Lab则是Jupyter的下一代笔记本界面。是一个基于Web的交互式开发环境,用于Jupyter notebook、代码和数据。非常灵活,可支持数据科学、科学计算和机器学习领域的广泛工作。是可扩展和模块化的,其可编写插件来添加新组件并与现有组件相集成。

2025-05-19 17:51:25 743

原创 YOLO模型predict(预测/推理)的参数设置

本文介绍了在使用YOLO模型进行预测/推理时,如何调整参数以优化结果。主要参数包括conf(置信度阈值),通过调整该值可以控制模型识别物体的数量,例如将conf设置为0.66时,识别结果会减少,而设置为0.05时,识别结果会增加。此外,文章还提到了其他关键参数,如task(任务类型)、mode(模式)、source(源文件)、classes(指定识别类别)等。通过调整这些参数,用户可以自定义模型的预测行为。最后,文章建议参考官方文档和default.yaml文件以深入了解所有可用参数及其作用。

2025-05-19 16:49:11 723

原创 Ultralytics YOLO11模型预测初体验(+实例+亲测)

​在机器学习和计算机视觉领域,从可视数据中找出意义的过程被称为 "推理 "或 "预测"。Ultralytics YOLO11 提供了一个名为 "预测模式"的强大功能,专门用于对各种数据源进行高性能的实时推理。

2025-05-19 15:59:32 917

原创 基于MCP协议的MySQL sse服务并提供dify调用(亲测)

这是一个基于MCP(Model-Controller-Provider)框架的MySQL查询服务器,提供了通过SSE(Server-Sent Events)进行MySQL数据库操作的功能。

2025-04-28 15:11:36 1394 1

原创 SpringBoot中使用artemis发送和处理消息简单示例(亲测)

本文注意介绍SpringBoot集成 ActiveMQ Artemis 2.40.0的配置方法及简单示例。

2025-04-23 14:04:33 1002

原创 Cline插件+MCP 快速打造首个MCP服务应用: 实例解析(亲测)

Cline 是一款开源的 VSCode 插件,它不仅能够帮助开发者进行代码编辑,还具备了强大的 AI 助手功能。借助 Claude 3.5 Sonnet 的代理编程能力,Cline 可以执行复杂的软件开发任务,如创建和编辑文件、浏览项目、执行终端命令等。最重要的是,Cline 通过与 MCP 协议的结合,使得开发者能够轻松扩展 AI 的功能,甚至创建完全自定义的智能体。Cline 的主要优势:易于集成:通过简单的配置,开发者可以在 VSCode 中轻松集成 AI 助手。

2025-04-02 16:28:14 1511

原创 Windows本地部署Xorbits Inference模型平台【Xinference】亲测

简介Xorbits Inference (Xinference)是一个开源平台,用于简化各种AI模型的运行和集成。借助 Xinference,您可以使用任何开源LLM、嵌入模型和多模态模型在云端或本地环境中运行推理,并创建强大的AI应用。特点多模型:提供50多个开源模型,从文本生成到图像生成,始终保持行业前沿。多硬件:支持多种硬件平台,按需部署。可定制:根据自己的需求和数据进行模型微调,提升模型在特点业务场景下的效果。低门槛:支持一体机/云端部署等多种部署模式,降低运维成本。

2025-03-27 15:34:20 1188

原创 Ollama 下载Embedding模型并配置到Dify中(亲测)

Embedding 模型的主要任务是将文本转换为数值向量表示。这些向量可以用于计算文本之间的相似度、进行信息检索和聚类分析。

2025-03-26 16:18:34 2740

原创 dify在windows环境中的部署,并集成deepseek模型(亲测)

即可进入dify页面,可通过修改docker-composed.yaml配置更改进入端口)克隆完成,在这个文件夹找到dify>docker,里面应该包含。进行克隆(哪个能用用哪个,因为http可能遇到网络问题,,也就是宿主机本机的默认地址窗口,直接输入。配制完成后,直接预览或者发布就可以使用了。右键在终端中打开当前目录,执行。(注意,由于现在完全没有修改。在官网下载docker。在自己创建的文件内使用。

2025-03-13 16:29:50 915

原创 RAGFlow在windows环境下的部署,并配置​Deepseek模型​(亲测)

RAG(,检索增强生成)是一种结合了信息检索(Retrieval)和自然语言生成(Generation)的技术框架。它通过从外部知识库中检索相关信息,并将其作为上下文输入到(LLM)中,从而增强模型生成回答的准确性、相关性和可解释性。RAGFlow是一个基于深度文档理解的开源RAG(检索增强生成)引擎。当与LLM集成时,它能够提供真实的问答能力,并得到来自各种复杂格式数据的充分引用的支持。

2025-03-13 14:16:35 1573

原创 AnythingLLM、Dify 和 RAGFlow 三款工具的对比分析

目前给朋友推荐的Cherry Studio,自己在用AnythingLLM和Cherry Studio,感觉两个的知识库都不是很友好。,适合中小规模私有化部署。实际选型需结合数据复杂度、开发资源与业务目标综合考量。搭建本地知识库,询问deepseek,并记录。,适合专业领域的高精度需求;,适合技术团队快速迭代;

2025-03-11 11:52:55 2181

原创 利用Dify和flask搭建AI结合知识库自动生成word的应用(亲测)

介绍一个利用Dify和flask搭建AI结合知识库自动生成word的应用的例子

2025-02-25 11:04:27 8327 1

原创 利用Dify和Marp搭建AI自动生成ppt的应用(亲测)

​Dify是一个开源的LLM应用开发平台,它通过直观的可视化界面,帮助开发者快速构建和部署AI应用,支持包括模型管理、知识库、工作流编排等全方位功能,你可以把它理解为一个类似于扣子的"AI应用的乐高积木系统";这里我们介绍一个用DIfy和Marp搭建自动生成ppt应用的例子。

2025-02-14 16:38:06 8679 9

原创 探索Dify:一个大型语言模型(LLM)应用开发平台,一种智能语言处理工具

Dify的核心是基于Transformer架构的预训练模型,这使得它在各种语言理解任务上具有出色的表现。一个开源助手API和GPT的替代品。它整合了后端即服务(Backend as a Serice)和LLMOps的樱念,涵盖了构建生成性AI原生应用所需的核心技术栈,包括内置的RAG引擎。除此之外,Dify还具备一些高级特性,如对话系统的构建和自定义模型的微调,这让它在多种场景下都能发挥重要作用。这个项目的目的是简化AI应用中的复杂语言任务,让开发人员能够更专注于他们的核心业务逻辑,而非底层的NLP实现。

2025-02-11 11:48:59 3835

原创 使用deepseek快速创作ppt

DeepSeek作为目前最强大模型,其推理能力炸裂,但是DeepSeek官方没有提供生成PPT功能,如果让DeepSeek做PPT呢?那么有人问了为啥不直接让Kimi生成PPT呢?这是因为DeepSeek是推理大模型,生成的内容质量更高,可以让PPT的质量更好。下面举例生成一份。

2025-02-10 10:23:34 228

原创 springboot接入deepseek简单实例(亲测有效)

answer = {"id":"88dbce49-2841-448d-a74f-a2d3180c5672","object":"chat.completion","created":1734525002,"model":"deepseek-chat","choices":[{"index":0,"message":{"role":"assistant","content":"当然,我很高兴!点击创建API key,把创建的key值复制下来,以后就不能再查看了,只能重新创建。// 发送请求并获取响应。

2025-02-07 11:50:51 533

原创 Springboot 对接openAI简单实例(亲测有效)

记得要开计费,否则调用时会报错:You exceeded your current quota, please check your plan and billing details....logger.info("AI模型调用:OpenAiServiceWrapper log");.model("gpt-3.5-turbo") // 使用特定的GPT模型。-- 使用合适的版本 -->注意:apiKey 需要填写自己申请的key。

2025-02-06 10:55:36 748

带进度条的HTML5上传文件(使用XMLHttpRequest对象)

带进度条的HTML5上传文件---(使用XMLHttpRequest对象)

2018-05-08

培训资料—redis

附件给出redis的培训资料、实例代码及开发文档,帮助初学者快速上手

2018-05-08

html5 webGl

WebGL基础,WebGL中的骑兵Three.js,Three.js的简单实例

2018-05-08

Axure基本培训相关资料

Axure的基本培训资料,安装包及汉化版,各种组件及手机设计图标

2018-05-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除