YOLO模型predict(预测/推理)的参数设置

上一章描述了预测初体验,基本可以使用现有的yolo模型进行预测/推理。本次我们了解一下这个过程中的参数的作用。

1.参数示例

conf=0.68 :表示模型识别这个东西是车的概率为68% 。一般默认的情况下,概率小于25%的就不显示了。

1)调整一下python的代码的参数如下,可以预测图片能够识别的东西就会变少。

from ultralytics import YOLO

# 自定义yolo对象,设定好model和task,指定源文件,设置保存save=True,启动预测

yolo = YOLO(model = 'yolo11n.pt', task='detect')

results = yolo(mode='predict',source = 'cars.jpg',save=True, conf=0.66)

 

2)调整一下python的代码的参数如下,可以预测图片能够识别的东西就会变多。

from ultralytics import YOLO

### YOLO v11 预测函数参数说明 对于YOLO v11模型,在调用`predict`方法时,可以通过设置不同的参数来控制预测过程的行为。以下是主要参数及其功能: #### 数据源配置 - **source**: 定义输入数据的位置或类型。这可以是一个图像路径、视频文件或者摄像头索引等[^2]。 ```python model.predict(source='path_to_image_or_video') ``` #### 模型推理选项 - **conf_threshold (float)**: 设置置信度阈值,默认情况下可能是0.25。只有当检测框的得分高于此阈值才会被保留下来作为最终结果的一部分。 - **iou_threshold (float)**: 用于非极大抑制(NMS)中的交并比(IoU)阈值,默认可能设为0.45。该参数决定了哪些重叠过多的边界框会被移除。 - **imgsz (int or tuple[int])**: 输入图片尺寸大小,通常指定为整数表示边长(如640),也可以是两个维度组成的元组形式[(height,width)]。这个参数影响到网络接收的数据形状以及计算效率. ```python results = model.predict( source='input_data', conf_threshold=0.3, iou_threshold=0.5, imgsz=(640, 640), ) ``` #### 输出与显示设定 - **save_txt (bool)**: 是否保存每张测试图上的标注信息至`.txt`文件中,默认不开启(`False`)。 - **view_img (bool)**: 实时查看当前帧的结果可视化效果,默认关闭(`False`);如果启用了这项,则会在本地打开窗口展示实时推断成果。 - **project (str), name (str), exist_ok (bool)**: 这些参数共同作用于决定输出目录结构及命名规则。其中`exist_ok=True`允许覆盖已存在的同名文件夹而不报错。 ```python results = model.predict( ... , save_txt=True, view_img=True, project='./runs/detect/', name='exp_name', exist_ok=True ) ``` #### 性能优化选项 - **half_precision (bool)**: 使用半精度浮点运算(FP16),有助于加速GPU上的推理速度而几乎不影响精度. - **device (str)**: 明确指明使用的硬件设备,比如'cpu', 'cuda' 或者更具体的 GPU ID ('cuda:0'). ```python import torch if torch.cuda.is_available(): results = model.predict(device='cuda', half_precision=True) else: results = model.predict(device='cpu') ``` 通过上述参数调整,可以根据具体应用场景灵活定制YOLOv11的预测行为,从而更好地满足实际需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值